您现在的位置:首页 >  >> 基于钼掺杂精修缺陷态的W18O49催化剂用于光驱动固氮合成氨

基于钼掺杂精修缺陷态的W18O49催化剂用于光驱动固氮合成氨

时间:2019年07月16日 点击数: 出处: 编辑:

  当前工业合成氨技术以使用铁基催化剂的哈柏法(Haber-Bosch)为主,其反应条件非常苛刻(250大气压、400摄氏度),同时需要巨大的能耗。光催化技术能够直接将太阳能转化为化学能,为降低合成氨能耗提供了一种非常具有前景的方法。然而,氮-氮叁键的超高键能使得氮分子体现出了稳定的化学特性,从而导致常规的光催化材料很难活化氮分子。因此,开发高效的固氮合成氨光催化剂依然是巨大的挑战。中国科学技术大学熊宇杰教授团队与武晓君教授理论课题组合作,基于金属氧化物光催化剂的缺陷工程调控,发现通过掺杂的方式来精修催化剂的缺陷态,可以促进缺陷位点对氮分子的高效活化,有效地提高光催化固氮合成氨的效率。该工作在线发表于国际化学重要期刊《美国化学会志》(J. Am. Chem. Soc. DOI: 10.1021/jacs.8b02076)。 

  https://scms.ustc.edu.cn/_upload/article/images/b9/54/0681deac458697fc871253579391/6170185f-3967-4b08-9e15-9e47a1b01464.jpg 

  基于钼掺杂精修缺陷态的W18O49催化剂用于光驱动固氮合成氨示意图 

  从动力学上来看,鉴于氮分子超高的化学稳定性,氮分子活化一般被认为是氮还原的先决条件。对于光催化材料,表面缺陷位点可以作为氮分子化学吸附的活性位点,同时局域在缺陷处的电子可以转移进入吸附氮分子的反键π轨道,从而实现对氮-氮叁键的弱化作用。虽然目前已有相关文献成功报道了基于缺陷构筑的催化剂材料可用于光催化固氮合成氨反应,但是其活性仍有待进一步的提高。其瓶颈来自于多个方面:首先需要进一步调控催化位点对于氮分子的吸附作用,促进光生电子从催化剂向吸附氮分子的转移,以提高对氮分子的活化能力;其次需要抑制光生电子在缺陷处的能量驰豫过程,以减少电子传递过程中的能量损耗。 

  熊宇杰团队针对该系列挑战,将钼原子掺杂在W18O49催化剂的缺陷位点处,实现了光催化体系中氮分子的高效活化。利用北京同步辐射装置(BSRF开展X射线吸收谱(XAS)得到催化剂的重要精细结构信息,其中WLX射线近边吸收光谱(XANES)表明Mo的掺杂使W原子的电子密度降低,同时扩展X射线吸收精细结构谱(EXAFS)表明Mo掺杂没有改变W-O键长却使W/Mo-W键长减小。这些精细结构变化信息可以推断出Mo取代W18O49W原子形成Mo-W键。OKXAS表明Mo的掺杂使缺陷位点处金属-氧键的共价性增强,有利于电子从催化剂往吸附N2的转移。研究人员结合同步辐射技术表征、原位红外光谱检测和理论计算模拟,揭示了掺杂钼原子对缺陷状态的精修作用。一方面,钼掺杂提升了催化剂缺陷能级,减少了电子能量驰豫过程带来的能量损耗;另一方面,钼掺杂形成的钼-钨异质位点调控了吸附氮分子的电荷状态,增大了氮原子之间的电荷差,同时提高了金属-氧键的共价性,促进了光生电子转移过程。通过这些钼掺杂带来的不同效应之间的协同作用,有效地促进了催化位点对氮分子的活化,实现了催化剂光驱动固氮合成氨效率的大幅提升。该进展为开发高效的固氮光催化剂以及调控催化剂缺陷的状态提供了一种新的思路,并展示了催化位点电子结构的调控对催化反应的重要性。 

发表文章: 

  Ning Zhang,? Abdul Jalil,? Daoxiong Wu,? Shuangming Chen, Yifei Liu, Chao Gao,* Wei Ye, Zeming Qi, Huanxin Ju, Chengming Wang, Xiaojun Wu,* Li Song, Junfa Zhu, and Yujie Xiong*, Refining Defect States in W18O49 by Mo Doping: A Strategy for Tuning N2 Activation towards Solar-Driven Nitrogen Fixation.  J. Am. Chem. Soc. 2018, 140, 9434–9443.

字体: 收藏 打印文章