Mass Ordering Proposal
(1) Determination of the neutrino mass hierarchy at an intermediate baseline, Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 78, (2008) 111103, https://doi.org/10.1103/PhysRevD.78.111103
(2) Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos, Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 79,(2009) 073007 https://doi.org/10.1103/PhysRevD.79.073007
(3) Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos, Yu-Feng Li, Jun Cao, Yifang Wang, Liang Zhan, Phys. Rev. D 88, (2013) 013008 https://doi.org/10.1103/PhysRevD.88.013008
Reactor Neutrinos
(1) Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small? Yu-Feng Li, Yifang Wang, Zhi-zhong Xing, Chin.Phys.C 40 (2016) 9, 091001. https://doi.org/10.1088/1674-1137/40/9/091001 https://arxiv.org/abs/1605.00900
(2) Synergies and prospects for early resolution of the neutrino mass ordering, Anatael Cabrera, et al., Sci.Rep. 12 (2022) 1, 5393 https://doi.org/10.1038/s41598-022-09111-1 https://arxiv.org/abs/2008.11280
(3) Potential impact of sub-structure on the determination of neutrino mass hierarchy at medium-baseline reactor neutrino oscillation experiments, Zhaokan Chen, et al., Eur.Phys.J.C 80 (2020) 12, 1112. https://doi.org/10.1140/epjc/s10052-020-08664-7 https://arxiv.org/abs/2004.11659
(4) Why matter effects matter for JUNO, Amir N.Khan, Hiroshi Nunokawa, Stephen J.Parke, Phys.Lett.B 803 (2020) 135354. https://doi.org/10.1016/j.physletb.2020.135354 https://arxiv.org/abs/1910.12900
(5) Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations, Yu-Feng Li, Zhi-zhong Xing, Jing-yu Zhu, Phys.Lett.B 782 (2018) 578-588 https://doi.org/10.1016/j.physletb.2018.05.079 https://arxiv.org/abs/1802.04964
(6) A framework for testing leptonic unitarity by neutrino oscillation experiments, C.S. Fong, H. Minakata, H. Nunokawa, JHEP 2017 (2017) 114. https://doi.org/10.1007/JHEP02(2017)114 https://arxiv.org/abs/1609.08623
(7) Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors, Hongxin Wang, et al., Nucl.Phys.B 918 (2017) 245-256. https://doi.org/10.1016/j.nuclphysb.2017.03.002 https://arxiv.org/abs/1602.04442
(8) Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering, S. Aiello, et al., JHEP 03 (2022) 055. https://doi.org/10.1007/JHEP03(2022)055 https://arxiv.org/abs/2108.06293
(9) Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU, M.G. Aartsen, et al., Phys.Rev.D 101 (2020) 3, 032006. https://doi.org/10.1103/PhysRevD.101.032006 https://arxiv.org/abs/1911.06745
Solar Neutrinos
(1) Potential for a precision measurement of solar pp neutrinos in the Serappis Experiment, Lukas Bieger, et al., Eur.Phys.J.C 82 (2022) 9, 779. https://doi.org/10.1140/epjc/s10052-022-10725-y https://arxiv.org/abs/2109.10782
(2) Unambiguously Resolving the Potential Neutrino Magnetic Moment Signal at Large Liquid Scintillator Detectors, Ziping Ye, Feiyang Zhang, Donglian Xu, Jianglai Liu, Chin.Phys.Lett. 38 (2021) 11, 111401. https://doi.org/10.1088/0256-307X/38/11/111401 https://arxiv.org/abs/2103.11771
(3) Sensitivity to neutrino-antineutrino transitions for boron neutrinos, S.J.Li, J.J.Ling, N.Raper, M.V.Smirnov, Nucl.Phys.B 944 (2019) 114661. https://doi.org/10.1016/j.nuclphysb.2019.114661 https://arxiv.org/abs/1905.05464
Atmospheric Neutrinos
(1) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. I. Model predictions, Jie Cheng, Yu-Feng Li, Liang-Jian Wen, and Shun Zhou Phys.Rev.D 103 (2021) 5, 053001 https://doi.org/10.1103/PhysRevD.103.053001 https://arxiv.org/abs/2008.04633
(2) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for in situ measurements, Jie Cheng, Yu-Feng Li, Hao-Qi Lu, and Liang-Jian Wen Phys.Rev.D 103 (2021) 5, 053002 https://doi.org/10.1103/PhysRevD.103.053002 https://arxiv.org/abs/2009.04085
(3) Low energy neutrinos from stopped muons in the Earth, Wan-Lei Guo, Phys.Rev.D 99 (2019) 7, 073007. https://doi.org/10.1103/PhysRevD.99.073007 https://arxiv.org/abs/1812.04378
Supernova Neutrinos
(1) Constraining sterile neutrinos by core-collapse supernovae with multiple detectors, Jian Tang, TseChun Wang, Meng-Ru Wu JCAP 10 (2020) 038 https://doi.org/10.1088/1475-7516/2020/10/038 https://arxiv.org/abs/2005.09168
(2) Prospects for Pre-supernova Neutrino Observation in Future Large Liquid-scintillator Detectors, Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou JCAP 05 (2020) 049 https://doi.org/10.1088/1475-7516/2020/05/049 https://arxiv.org/abs/2003.03982
(3) Model-independent approach to the reconstruction of multiflavor supernova neutrino energy spectra, Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou Phys.Rev.D 99 (2019) 12, 123009 https://doi.org/10.1103/PhysRevD.99.123009 https://arxiv.org/abs/1903.04781
(4) Towards a complete reconstruction of supernova neutrino spectra in future large liquid-scintillator detectors, Hui-Ling Li, Yu-Feng Li, Meng Wang, Liang-Jian Wen, Shun Zhou Phys.Rev.D 97 (2018) 6, 063014 https://doi.org/10.1103/PhysRevD.97.063014 https://arxiv.org/abs/1712.06985
(5) Getting the most from the detection of Galactic supernova neutrinos in future large liquid-scintillator detectors, Jia-Shu Lu, Yu-Feng Li, and Shun Zhou Phys.Rev.D 94 (2016) 2, 023006 https://doi.org/10.1103/PhysRevD.94.023006 https://arxiv.org/abs/1605.07803
(6) Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO, Jia-Shu Lu, Jun Cao, Yu-Feng Li, and Shun Zhou JCAP 05 (2015) 044 https://doi.org/10.1088/1475-7516/2015/05/044 https://arxiv.org/abs/1412.7418
(7) Testing MSW effect in Supernova Explosion with Neutrino event rates, Kwang-Chang Lai, C. S. Jason Leung, Guey-Lin Lin https://arxiv.org/abs/2001.08543
Diffuse Supernova Neutrino Background
(1) Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO, Yu-Feng Li, Mark Vagins, Michael Wurm Universe 8 (2022) 3, 181 https://doi.org/10.3390/universe8030181 https://arxiv.org/abs/2201.12920
Geo Neutrinos
(1) JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO, RuohanGao, et al, Phys.Earth Planet.Interiors 299 (2020) 106409. https://doi.org/10.1016/j.pepi.2019.106409 https://arxiv.org/abs/1903.11871
(2) Non-negligible oscillation effects in the crustal geoneutrino calculations, Xin Mao, Ran Han, and Yu-Feng Li, Phys.Rev.D 100 (2019) 11, 113009. https://doi.org/10.1103/PhysRevD.100.113009 https://arxiv.org/abs/1911.12302
(3) GIGJ: a crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment M. Reguzzoni, et al, J.Geophys.Res.Solid Earth 124 (2019) 4, 4231-4249. https://doi.org/10.1029/2018JB016681 https://arxiv.org/abs/1901.01945
(4) Potential of Geo-neutrino Measurements at JUNO, Ran Han, Yu-Feng Li, Liang Zhan, William F. McDonough, Jun Cao, Livia Ludhova, Chin.Phys.C 40 (2016) 3, 033003. https://doi.org/10.1088/1674-1137/40/3/033003 https://arxiv.org/abs/1510.01523
Dark Matter
(1) Constraining primordial black holes as dark matter at JUNO, Sai Wang, Dong-Mei Xia, Xukun Zhang, Shun Zhou, Zhe Chang, Phys.Rev.D 103 (2021) 4, 043010. https://doi.org/10.1103/PhysRevD.103.043010 https://arxiv.org/abs/2010.16053
(2) Detecting electron neutrinos from solar dark matter annihilation by JUNO, Wan-Lei Guo, JCAP 01 (2016) 039. https://doi.org/10.1088/1475-7516/2016/01/039 https://arxiv.org/abs/1511.04888
Nucleon Decay
(1) Implementation of residual nucleus de-excitations associated with proton decays in 12C based on the GENIE generator and TALYS code, Hang Hu, Wan-Lei Guo, Jun Su, Wei Wang, Cenxi Yuan, Phys.Lett.B 831 (2022) 137183 https://doi.org/10.1016/j.physletb.2022.137183 https://arxiv.org/abs/2108.11376
(2) Exploring neutrinos from proton decays catalyzed by GUT monopoles in the Sun, Hang Hu, Jie Cheng, Wan-Lei Guo, Wei Wang, JCAP, in press. https://arxiv.org/abs/2201.02386
New Physics
(1) Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays, Jun Cao, et al, Chin.Phys.C 44 (2020) 3, 031001. https://doi.org/10.1088/1674-1137/44/3/031001 https://arxiv.org/abs/1908.08355
(2) Physics potential of searching for 0νββ decays in JUNO, Jie Zhao, Liang-Jian Wen, Yi-Fang Wang, Jun Cao, Chin.Phys.C 41 (2017) 5, 053001. https://doi.org/10.1088/1674-1137/41/5/053001 https://arxiv.org/abs/1610.07143
(3) Light dark bosons in the JUNO-TAO neutrino detector, M. Smirnov, et al., Phys.Rev.D 104 (2021) 11, 116024. https://doi.org/10.1103/PhysRevD.104.116024 https://arxiv.org/abs/2109.04276
(4) Studying the neutrino wave-packet effects at medium-baseline reactor neutrino oscillation experiments and the potential benefits of an extra detector, Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang, Nucl.Phys.B 964 (2021) 115304. https://doi.org/10.1016/j.nuclphysb.2021.115304 https://arxiv.org/abs/2009.06450
(5) The sensitivity to electron antineutrinos from the binary neutron star systems at medium-baseline reactor neutrino oscillation experiment(s), Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang, JHEAp 28 (2020) 1-9. https://doi.org/10.1016/j.jheap.2020.10.001
(6) Constraining visible neutrino decay at KamLAND and JUNO, Yago P. Porto-Silva, et al., Eur.Phys.J.C 80 (2020) 10, 999. https://doi.org/10.1140/epjc/s10052-020-08573-9 https://arxiv.org/abs/2002.12134
(7) Exploring detection of nuclearites in a large liquid scintillator neutrino detector, Wan-Lei Guo, Cheng-Jun Xia, Tao Lin, Zhi-Min Wang, Phys.Rev.D 95 (2017) 1, 015010. https://doi.org/10.1103/PhysRevD.95.015010 https://arxiv.org/abs/1611.00166
(8) Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment, Yu-Feng Li, Zhen-hua Zhao, Phys.Rev.D 90 (2014) 11, 113014. https://doi.org/10.1103/PhysRevD.90.113014 https://arxiv.org/abs/1409.6970
(9) Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions, Yu-Feng Li, Ye-Ling Zhou, Nucl.Phys.B 888 (2014) 137-153. https://doi.org/10.1016/j.nuclphysb.2014.09.013 https://arxiv.org/abs/1408.6301
Others
(1) Potential of octant degeneracy resolution in JUNO, M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling Chin.Phys.C 43 (2019) 3, 033001. https://doi.org/10.1088/1674-1137/43/3/033001 https://arxiv.org/abs/1808.03795
(2) The possibility of leptonic CP-violation measurement with JUNO, M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling, Nucl.Phys.B 931 (2018) 437-445. https://doi.org/10.1016/j.nuclphysb.2018.05.003 https://arxiv.org/abs/1802.03677