2022
1) JUNO Sensitivity on Proton Decay p\to \bar\nu K^+ Searches, https://arxiv.org/abs/2212.08502, submitted to PRD
2) Model Independent Approach of the JUNO B8 Solar Neutrino Program, https://arxiv.org/abs/2210.08437, submitted to APJ (17-Oct-2022)
3) Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO, Chin. Phys. C 46 (2022) 123001. https://iopscience.iop.org/article/10.1088/1674-1137/ac8bc9 https://arxiv.org/abs/2204.13249
4) Mass Testing and Characterization of 20-inch PMTs for JUNO, Eur. Phys. J. C 82 (2022) 1168. https://doi.org/10.1140/epjc/s10052-022-11002-8 https://arxiv.org/abs/2205.08629
5) Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO, JCAP 10 (2022) 033. https://doi.org/10.1088/1475-7516/2022/10/033 https://arxiv.org/abs/2205.08830
6) JUNO Physics and Detector, Prog. Part. Nucl. Phys. 123, (2022) 103927 https://doi.org/10.1016/j.ppnp.2021.103927 https://arxiv.org/abs/2104.02565
7) Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment, JHEP 06 (2022) 062. https://doi.org/10.1007/JHEP06(2022)062 https://arxiv.org/abs/2112.14450
2021
6) Radioactivity control strategy for the JUNO detector, J. High Energy Phys. 11, (2021) 102. https://doi.org/10.1007/JHEP11(2021)102 https://arxiv.org/abs/2107.03669
7) The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS, Eur. Phys. J. C 81, (2021) 973 https://doi.org/10.1140/epjc/s10052-021-09544-4 https://arxiv.org/abs/2103.16900
8) JUNO sensitivity to low energy atmospheric neutrino spectra, Eur. Phys. J. C 81, (2021) 887 https://doi.org/10.1140/epjc/s10052-021-09565-z https://arxiv.org/abs/2103.09908
9) Calibration strategy of the JUNO experiment, J. High Energy Phys. 03, (2021) 004 https://doi.org/10.1007/JHEP03(2021)004 https://arxiv.org/abs/2011.06405
10) Feasibility and physics potential of detecting B-8 solar neutrinos at JUNO, Chin. Phys. C 45, (2021) 023004 https://doi.org/10.1088/1674-1137/abd92a https://arxiv.org/abs/2006.11760
11) Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector, Nucl. Instrum. Methods A 988, (2021) 164823 https://doi.org/10.1016/j.nima.2020.164823 https://arxiv.org/abs/2007.00314
2016
12) Neutrino Physics with JUNO, J.Phys.G 43 (2016) 3, 030401 https://doi.org/10.1088/0954-3899/43/3/030401 https://arxiv.org/abs/1507.05613