世界上的物质是由分子和原子构成的,原子就像是原子核和核外电子的微小太阳系,质子和中子构成了原子核。
中子作为组成原子核的基本粒子之一,不带电,因此被称为中子。它是由剑桥大学卡文迪许实验室的英国物理学家詹姆斯·查德威克于1932年发现的。中子对轻的原子核非常敏感,能够精确测得分子结构中的氢原子位置,还能定位“掺杂”在重原子中的其他轻原子。中子的这种特性,使它能够“拍摄”到材料的微观结构,跟踪正在运动中的原子核分子的行为。
中子主要是通过“中子散射”过程来实现对样品的研究:当一束中子入射到所研究的对象上时,与研究材料中的原子核或磁矩发生相互作用,向各个方向散射开来。就好像一束光打在半透明的物体上,有的光透过物体,有的光被反射或散射,这样我们能够从各个方向上看到物体。中子束流打到样品上时,大多数中子会穿过样品,不受任何阻碍,但有些中子将直接与样品的原子核发生相互作用,运动方向发生改变而发生分散传播,就像弹珠游戏一样。通过测量散射出来的中子能量和动量的变化,可以在原子、分子尺度上研究各种物质的微观结构和运动规律,告诉人们原子、分子在哪里,在做什么,这种研究手段叫做中子散射技术。
中子散射和X射线技术都是人类探索物质微观结构的有力手段。慢中子散射技术是当今研究物质微观结构和运动最重要的工具之一,与同步辐射光源在很多方面有相辅相成的作用,在非常宽广的研究领域如材料、物理、生物、化学、地学和工程等研究中都是很有效的工具。与其它物质结构的手段相比,中子散射具有以下明显的特点或优势:
宽广的波长范围:与物质中原子间距相近,是度量物质微观结构最适合的标尺,探测范围从氢原子到生物大分子。
合适的能量覆盖:适合研究物质中各种不同的相互作用和动态过程,探测范围从分子振动、晶格振动到电子层跃迁。
直接与核作用:对轻元素原子灵敏和可以区分同位素,是研究生物大分子的强有力工具。
中子磁矩: 很适合用来研究磁性材料中的微观磁结构和磁涨落。
对样品系统扰动小:有利于研究微观结构的细微变化。
高穿透性:易于开展工业大部件和极端条件下物质结构和动态的研究。
【相关小知识】
中子散射:中子作为一种粒子,与材料中的原子核相互作用,运动方向发生改变而分散传播,发生散射。
|