Measurement of The Polarization in $D^0 \rightarrow VV$ Decays On BES-III

LIU Kun LIANG Yutie

School of Physics, PKU

The $10^{\rm th}$ National Conference of Particle Physics

April 27, 2008

1 / 16

K.Liu, Y.T.Liang (HEP@PKU)

Outline

1 Introduction

- Physics Motivations
- Brief Introduction to Helicity Formalism
- 2 Data Simulation and Reconstruction
 - Data Sets
 - D^0 Candidate Reconstruction
 - Preparation of Data Samples With Given f_L

3 Extraction of f_L With Artificial Neural Network

- Configuration and Training of ANN
- Result and Error Estimation
- Potential of BES-III on Measuring f_L
- Maximum Likelihood Fit As Comparison
 - Binned Maximum Likelihood Fit
 - Result from ML Fit

Physics Motivations

- Precise measurement of longitudinal polarization can enhance our understanding of $D^0 \to VV$ decays.
- It will be interesting to compare the results of D^0 and \bar{D}^0 decay to a common final state.
- Provide a new method to measure the mixing and CP violating parameters[†].

Possible decay channels on BES-III

• $D^0 \to \bar{K}^{*0} \rho^0$ (1.5 ± 0.33)% • $D^0 \to \bar{K}^{*0} \omega$ (1.1 ± 0.04)% • $D^0 \to K^{*0} \bar{K}^{*0}$ ~ 0.27%

April 27, 2008

3 / 16

K.Liu, Y.T.Liang (HEP@PKU)

[†]For more information, please refer to I. Dunietz *et al.*, Phys.Rev.D 43, <u>1</u>991 () + ()

Decay Amplitudes in Helicity Formalism

The $D^0 \rightarrow VV$ decays can be described by three amplitudes, which can be expressed in three different bases:

- In the *partial wave basis*, the amplitudes are related to relative angular momentum L, corresponding to the S, P and D waves.
- In the *helicity basis*, the amplitudes correspond to *helicity eigenstates*, including *longitudinal* ($\lambda = 0$) part and *transverse* ($\lambda = \pm 1$) part.

$$\begin{array}{l} longitudinal \; (\lambda = 0): \; A_0 = -\frac{1}{\sqrt{3}}S + \sqrt{\frac{2}{3}}D \\ transverse \; (\lambda = +1): \; A_{+1} = \frac{1}{\sqrt{3}}S + \frac{1}{\sqrt{6}}D + \frac{1}{\sqrt{2}}P \\ transverse \; (\lambda = -1): \; A_{-1} = \frac{1}{\sqrt{3}}S + \frac{1}{\sqrt{6}}D - \frac{1}{\sqrt{2}}P \end{array}$$

• To form *CP eigenstates*, the above decay amplitudes can be rewrote in their linear combinations, this is called the *transversity formalism*.

Angular Distribution in Helicity Formalism

Definition (Helicity angle)

- Choose z axis to be along the line of flight of V₁.
- The helicity angle θ₁ in the decay of V₁ is defined as the angle between z and direction of A in rest frame of V₁.
- The helicity angle θ₂ is defined likewise.

General angular distribution:

$$\begin{split} \frac{1}{\Gamma} \frac{d^3 \Gamma}{d\cos\theta_1 d\cos\theta_2 d\phi} &= \frac{9}{16\pi} \frac{1}{|A_0|^2 + |A_{+1}|^2 + |A_{-1}|^2} \Big\{ \frac{1}{2} \sin^2\theta_1 \sin^2\theta_2 (|A_{+1}|^2 + |A_{-1}|^2) \\ &\quad + 2\cos^2\theta_1 \cos^2\theta_2 |A_0|^2 + \sin^2\theta_1 \sin^2\theta_2 [\cos 2\phi \mathcal{R}e(A_{+1}A_{-1}^*)] \\ &\quad - \sin 2\phi \mathcal{I}m(A_{+1}A_{-1}^*)] - \frac{1}{2}\sin 2\theta_1 \sin 2\theta_2 [\cos \phi \mathcal{R}e(A_{+1}A_0^* + A_{-1}A_0^*)] \\ &\quad - \sin \phi \mathcal{I}m(A_{+1}A_0^* - A_{-1}A_0^*)] \Big\} \end{split}$$

K.Liu, Y.T.Liang (HEP@PKU)

Signal sample:

- Decay mode: $\psi(3770) \to D^0 \overline{D}^0, \ D^0 \to (K_S \pi^0)_{\bar{K}^{*0}} (\pi^+ \pi^-)_{\rho^0}$
- $\mathcal{BR}(\psi(3770) \to D^0 \bar{D}^0) \sim 57.2\%, \ \mathcal{BR}(D^0 \to K_S \pi^0 \pi^+ \pi^-) \sim 0.50\%$
- In this analysis, 90K signal events are generated and about 50K events are finally used to create the signal sample.

Background sample:

- 3.5M $\psi(3770)$ inclusive decay events are used to build background sample.
- In both signal and background data, the input value of longitudinal polarization fraction (f_L) is 0.33.
- Background and signal samples are generated under BOSS6.3.1.

- Good photon cuts: $E_{\gamma} \ge 20 MeV; \quad \theta \ge 20^{\circ}; \quad \phi \ge 20^{\circ}$
- Use kinematic fit for K_S and π^0 reconstruction: $\chi^2(K_S \to \pi^+\pi^-) \le 500; \quad \chi^2(\pi^0 \to \gamma\gamma) \le 500$
- Use ParticleID to separate K/π
- Use kinematic fit to reconstruct D^0 : The $(K_S \pi^0 \pi^+ \pi^-)$ combination with least $\chi^2 (\leq 50)$ is selected.
- Mass window cuts:

$$\begin{split} \Delta M_D &= |M_{D_0} - 1.851| \leq 0.012;\\ \Delta M_K &= |M_{\bar{K}^{*0}} - 0.892| \leq 0.12;\\ \Delta M_\rho &= |M_{\rho^0} - 0.771| \leq 0.16;\\ \Delta M_K^2 + \Delta M_\rho^2 < 0.02; \end{split}$$

D^0 Candidate Reconstruction

- Fitting results of signal sample: $M_{D^0} = 1.86514 \pm 0.00007 \text{ GeV}$ $\sigma = (2.93 \pm 0.07) \times 10^{-3} \text{ GeV}$ $N_{Sig} = 2451 \pm 62$ $N_{Bkg} = 1813 \pm 57$ $\epsilon = 2.72\%$
- Fitting results of inclusive decay sample: $M_{D^0} = 1.8652 \pm 0.0002 \text{ GeV}$ $\sigma = (3.02 \pm 0.02) \times 10^{-3} \text{ GeV}$ $N_{Sig} = 702 \pm 52$ $N_{Bkg} = 3090 \pm 71$
- According to the input branch ratio, about 356 events are expected in the signal region. The rest 346 events are mainly the contribution of non-resonant background.

Data sample with different f_L and number of signal events N_S can be created in the following procedure:

• simplified 1-D angular distribution function:

$$\frac{d\Gamma}{d\cos\theta_1} = \frac{3}{4} \left[f_L \cdot 2\cos^2\theta_1 + (1 - f_L)\sin^2\theta_1 \right]$$

- Use distribution function at $f_L = 1$ and $f_L = 0$ to make longitudinal and transverse samples respectively.
- The signal events are subtracted from the inclusive decay sample.
- For particular f_L and N_S , randomly select and combine corresponding number of longitudinal, transverse and background events.
- With different seeds for random number, different samples with the same f_L and N_S can be generated.

April 27, 2008

9 / 16

Configuration and Training of ANN

ANN configuration:

- The angular distribution is discretized into 10 bins as the input of ANN.
- Two hidden layers, with 20 and 5 neurons.
- The configuration parameters are preliminarily optimized.

ANN training:

- Training data:
 - Set $f_L = 0, 0.01, 0.02, ..., 1.00$, six different data sample are generated and discretized at each f_L value.
- ANN is trained for 600 training cycles

Result and Error Estimation

- The error bar is defined as the standard deviation of ANN output for 100 different data samples at each fixed f_L .
- The data sample used as the ANN input contains approximately 850 signal events.

Potential of BES-III on Measuring f_L

• The observable number of events N^{obs} is related to $N(D^0\bar{D}^0)$ by the following formula:

$$N^{obs} = N(D^0 \bar{D}^0) \times \epsilon_{tag} \times \mathcal{BR}(D^0 \to (K_S \pi^0)_{\bar{K}^{*0}} (\pi^+ \pi^-)_{\rho^0}) \times \epsilon_{Rec}$$

• Taking $\epsilon_{tag} \sim 10\%$, $\mathcal{BR}(D^0 \to \bar{K}^{*0}\rho^0) = 0.50\%$, $\epsilon_{Rec} \sim 2.72\%$, we have:

$$N^{obs} = N(D^0 \bar{D}^0) \times 1.36 \times 10^{-5}$$

- With one year of data taking at \mathcal{L}_{peak} , we can get about $18 \times 10^6 D^0 \bar{D}^0$ pairs, the according statistical error is ± 0.1 .
- In four years of running, about $72 \times 10^6 D^0 \overline{D}^0$ pairs will be collected, therefore the statistical error of f_L would be ± 0.03 .

Binned Maximum Likelihood Fit

- ML fit to extract signal yields and f_L in case of small signal yields and/or large background
- Likelihood function:

$$\mathcal{L} = \frac{e^{-(N_S + N_B)}}{N_{evt}!} \prod_{i=1}^{N_{evt}} (N_S \mathcal{P}_S + N_B \mathcal{P}_B)$$

- $\mathcal{P}_S\colon \mathrm{PDF}$ of signal, generated by theoretical PDF multiplied with detector acceptance
- $\mathcal{P}_B\colon \mathrm{PDF}$ of background, generated by fitting background with a 3-order polynomial
- Fitting variable: currently only $\cos \theta_1$. Other variables including $\cos \theta_2$, ϕ , m_{D_0} , decay time, etc. can also be added in the future analysis.
- Performance of fitter is checked with toy MC data.

Result from ML Fit

- The reconstruction efficiency and background are both fitted with a 3-order polynomial.
- The data sample used in ML fit contains approximately 850 signal events.
- A systematic bias is found at high f_L value.

- By using either ANN or maximum likelihood fitting, we are able to achieve much better accuracy of polarization measurement (compared with PDG current value) after one year of data taking.
- ANN method requires much less effort concerning reconstruction efficiency and background parametrization, yet gives results with higher accuracy.
- The primary bottleneck of this analysis is the low reconstruction efficiency caused by π^0 in the final states. By switching to charged final states, the result could be greatly improved.

April 27, 2008

15 / 16

Thank you!

AUTHOR: LIU Kun ADDRESS: School of Physics Peking University Beijing, 100871, China EMAIL: liuk@hep.pku.edu.cn

April 27, 2008