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1. Introduction

Motivation: Why space time non-commuting? i,The NC space is
necessary when one studies the low energy effective theory of D-
brane with B field background, but also because in the very tiny
string scale or at very high energy situation, the effects of non com-
mutativity of both space-space and momentum-momentum may ap-
pear. ii, New physics.

The purpose of this talk : Brief review of NCQM and present some
of my recent achievements on NC topological phases (NC Aharonov
and Casher (AC) effect and He-Meckellar-Wilkens(HMW ) effect.
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2. The map of quantum mechanics equations
from NC space to commutative space.

Define:

NC space: space-space noncommuting with momentum-momentum
commuting.

NC phase space: both space-space and momentum-momentum non-
commuting.

On NC space, we have

(1)
It is shown that p,, and z; can be represented in terms of coordinates
and momenta in usual quantum mechanics as
1

on
On NC phase space, we have the following commutation relations:

A

Ty = T; —

~

©i;pj, Di = Pi, (2)

(3)

On NC phase space the representation in (2) become

Sy 1 ,
Ty = QX — ﬁ@’ijpja

. (4)
pi = ap; + ﬁ@zjfﬂj-

In NC quantum mechanics, we need just to replace the usual product
with the Moyal-Weyl (or star) product, then the Schridinger equation
or Dirac equation will become the QM equations in NC quantum me-
chanics. Let H(z,p) be the Hamiltonian operator of the usual quantum
system, then the static Schrodinger equation on NC quantum mechanics
is usually written as

(5)
where the Moyal-Weyl (or star) product between two functions is defined
by (on NC space),

(6)



here f(z) and g(z) are two arbitrary functions. If we consider the case
of NC phase space the definition of star product can be generalized as:

(f*g)(T p) — e 2h() 0707+ 55 ()”0 01f<1’ p)g(Tp)
— e p)gep) + fo”&fagu-h O, (D

On NC space the star product can be replaced by a Bopp’s shift, i.e.
the star product can be changed into the ordinary product by replacing
H(xz,p) with H(Z,p). Thus the Schridinger equation can be written as,

(8)

Here x; and p; are coordinate and momentum operators in usual quantum
mechanics. Thus the Eq.(8) is actually defined on commutative space,
and the noncommutative effects can be evaluated through the O related
terms. Note that the © term always can be treated as a perturbation in
QM , since O;; << 1.

To map the Schrodinger equation from NC phase space to commuta-
tive space, the star product in Schrodinger equation should be replaced
with a generalized Bopp’s shift and the Schrodinger equation then has
the form

1 1 -
2ha %97‘/.7‘37,7)1/) = . (9)

For example, consider a free particle of mass m, on NC phase space,
its Hamiltonian have the form,

A 1 1 - 9
0= et 5 Oi)
1 1 = 9

H(ow; — Oi;pj, ap; +

with m’' = m/a?.
In three dimensional NC phase space, up to the first order of O’s, the
Schrodinger equation as,

oV (x,t v’ _ i i -
QYY) o Mo vy - Lxv g ;vv VIW(x,t) (1)
«
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where x; = O4x; V = 0;0;. When a = 1, which means © = 0, then the
transformation relations from noncommutative space to commutative
space become,

1o, (12)
T g 2% ijPj
Thus, our result reduces to the situation discussed in many papers in
literature, where the Schrodinger equation reads,

maq’(@’t"t) _ [;’M LV (x — 21hf))]\11(x, t), (13)

with fji = @ijpj.



3, Noncommutative AC Effect

I: Description of AC effect in 2+1 commutative space time

To begin with, let’s give a brief review of AC effect in 2+ 1 commuta-
tive space time. The Lagrangian for a neutral particle of spin-1/2 with
an anomalous magnetic dipole moment ., interacting with the electro-
magnetic field has the form

_ B 1
L= 17/}@'7“8#77@ - m¢¢ - iﬂmwaﬂwamﬁ (14)

The last term in the Lagrangian is responsible for the AC effect.

We restrict the particle moves on a plane (say z — y plane), then
the problem can be treated in 2 + 1 space time. We use the following
conventions for the 2+1 dimensional metric g,, and the anti-symmetric
tensor €,,,:

Juv = dlag(l, —1, —1) and €012 = +1. (15)

Other than to use 2 x 2 matrices satisfying the 241 dimensional Dirac
algebra, we will use three 4 x 4 Dirac matrices which can describe spin
up and down in the notional 2z direction for a particle and for its anti-
particle. In 2+1 dimensions these Dirac matrices satisfy the following

relation:

Vi = g — iy o e Ay, (16)

A particular representation is

0o 03 0 1 7:0_2 0 2 Z.O'l 0

Then the interaction term in the Lagrangian can be written as

ot P Fy, = Fy 0 e, 00 M, (18)
with
0 —E' —F?
= EY 0 —B% |, (19)

E? B? 0



where E' and B’ are the electric and magnetic fields, respectively. The
indices “1” and “2” indicate the coordinates on the r — y plane along
the xr and y directions. The index “3” indicates the z direction. The
Lagrangian now can be written as

L= «&m/‘a,,,w — maynp — (1/2)70012/1/,,,,,6,“,;;F“"gq/;“/"@b. (20)

By using E-L equation, the Dirac equation of motion for a spin half
neutral particle with a magnetic dipole moment y,, is

(iy,0" — (1/2)A/OO12umeﬂmgF”‘B“/“ —m)y =0, (21)
and the solution will have the form

where 1), is the solution for electromagnetic field free case . The phase
in Eq.(22) is called AC phase , we write it as

1 T p
quCV — _2700_12/%2/ g/z,(y‘a’anddxH' (23)

The AC phase above is the general AB phase for a spin-1/2 neutral
particle passing through an electromagnetic field. If we consider a sit-
uation of the standard AC configuration i.e. the particle moves on a
plane under the influence of an pure electric field produced by a uni-
formly charged infinitely long filament perpendicular to the plane, then
we have

‘ A . . P r 5 — - O’; O x _, — _
pAC = _700-12/1/771, / 507ij07/d'rEj - ’\/00—12/1/717,/ (kXE)dT - ( ’ ) / (/L,,Q(E)'dﬂ?,

0 —03
(24)

where F is the unit vector in z direction and we assume that the magnetic

dipole moment is always along this direction, i.e. [, = u;k.

II: AC effect in 241 NC space



Just like the static Schridinger equation on NC space[?], the Dirac
equation (21) for a spin half neutral particle with a magnetic dipole
moment /,,, on NC space, can be written as

(7;’*//16/1 - (1/2)A/'/OU12/11777,6/1,0,3FG’37# o Tﬂ) * U - 0‘ (25)

i.e, simply replace usual product with a star product (Moyal-Weyl prod-
uct), the Dirac equation in usual commuting space will change into the
Dirac equation on NC space. Some features of AC effect on noncommu-
tative space has been studied in [?] by using the star calculation, but it
is still meaningful to study it again by using the method gave in refer-
ence [?], i.e. through a generalized Bopp's shift, and the method can be
easily generalized to NC phase space which will be discussed in the next
section.

On NC space the star product can be replaced by a Bopp’s shift,
i.e the star product can be changed into ordinary product by shifting

coordinates x " with

. 1 5
T, =x, — i@wjp . (26)

Now, let us consider the noncommutative Dirac equation (25), to replace
the star product with ordinary product, equivalent to the Bopp’s shift,
the [, must, up to the first order of the NC parameter O, be shifted by

A 1
F}u/ - F}zz/ - F:u,z/ + 56043]7(\:&31:‘/17/' (27)

Then the Dirac equation for AC problem on NC space has the form
(iy, 0" — (1/2)“/OU12umemgﬁ“‘ﬁﬂ,/“ —m)y = 0. (28)

So, on NC space, the AC phase has the form:

A 1 . T A
0 _12 alB g1
Qac = _5 Y O m / 5#@;3F dx’

1 T o 1 . T .
0 _12 - 3 0 _12 ‘ af3 7.1
— _iﬁ/ o ,u'm/ C/L(}BF“ dat — Zﬁ/ o /j/m,/ 6/1,(},3@(77—])(707'17” da”. (29)

This is the general AC phase for a spin-1/2 neutral particle moving in
a general electromagnetic field.
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In the standard AC configuration, the momentum on NC space can
be written as

pr=mu+ (E x ji); + O(0), (30)
where ji = p,,0, insert equation (100) to (123) and notice that
Fo% — FY% and 09 =g, % = oM =, (31)
we have
Pac = dac +0Pncs, (32)

where ¢ ¢ is the AC phase on commuting space given by (24), the addi-
tional phase d¢ncg, related to the non-commutativity of space, is given
by

1 T r — — i )
5¢NCS - _5/\/00_12”771 / 6/1,()729600’\3[777@(} + (E X M)(L]aﬁFoydl’/'

1

- 57/0012/%71960 ,/.:I;[kj + (E x ﬁ)jKaiE2dfl;l - 07E]d12) (33)

7

where k; = mv;. If the spin of the neutral particle along the z direction,

namely, we can chose i = 0'3/ng, then our result here will exactly the
same as the result given by B.Mirza and M.Zarei (EPJC), where the
tedious star product calculation has been used.

III: AC effect in 241 NC phase space
The Dirac equation (21) on NC phase space can also be written as:

(—yup" — (1/2)70012/Lm6#a5F0‘67“ —m) *x 1 =0, (34)

The star product in Dirac equation on NC phase space can be placed
by the usual product from the two steps, first we need to replace x; and
p; with a generalized Bopp’s shift as

1
Ly, — ar; — %@uypw
1 _
Pu = app+ 5Oy, (35)

20y
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and also need the partner of shift in Eq.(92) in NC phase space as,
N 1 )
F}LV - ELV — QEW + ?@mjpaaﬂjt’uu- (36)
o |

The Dirac equation (34) then read

1 = | 1 |
{—ay"p, — 2—7“@W:L'V — (1/2)“/0012#,”6#@3 [aF”‘S - 2—@”]97(90]7”‘8]“/“ —m}ip = 0.
o o
(37)
Because a # 0, so the above Dirac equation can be recast to

1 a (G 1 TO af
{_/yﬂp/l o ﬁ’yll@/wxu - <1/2)700-12/Mn,€/1,(m3 [Fad + ﬁ@ pTa(fF ”‘jh//’ o 7n/}1/) — Oa
| | (38)
where m’ = m/a. The solution to (38) is

= ey, (39)

where 1) is the solution of Dirac equation for free particle with mass m/’,
and the p40 stands AC phase in NC phase space, and it has the form
below,

1 T )
~ 0 _12 alB g
PAC = —éW g ,um/ EILL(LSF Pdz!

J - 1 x .
~947 . Oz jdr; — 3 o2, | / €039 D0 F S (40)

4

Equation (40) is the general AC phase in noncommutative phase space.
For the standard AC case i.e. particle moves in a pure static electric
field, then the AC phase reduces to

| . 1 T ; - :
@AC - ¢AC - 22/ @ledez - 9 2“/0012/1“"1// 6,11,0'/?96(1‘{}{777//7)0/, + (E X /_L))(y]aﬁFozdm/l

1 T — 1 ‘ P — - c ‘
=dac— 5 3 / Oyjr;dx; + ﬁv()au,&m@e“ / K+ (E x [@);)(0;E*dz' — 9, E'da?),

where k) = m'v;, pp=m'v + (E x [i); + O(0) has been applied and we omit
the second order terms in §. Equation (41) can also be written as

Pac = dac + 0dncs + ddNCePs, (42)
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where ¢4 is the AC phase on commuting space ( see Eq. 24), doncs
is the space-space non-commuting contribution to the AC phase on NC
space (see Eq. 102), and the last term d¢ncps is given by

3 . o -
A ot? 1,06 /l k;j(&;Ezd;Ul — 0;E'd2?)

1 T —
d0PNCPS = 92 / ©;jr;dx; + PE

2 S
A/OO-IQIUI’H’LHEZ‘]/ (E X /j)](a/Eerl - aiEldIQ)J (43)

1 -«
2002

which represents the non-commutativity of the momenta. The first term
in 0¢ncps is a contribution purely from the non-commutativity of the mo-
menta, the second term is a velocity dependent correction and the third
term is a correction to the vortex of magnetic field. In 2 dimensional
non-commutative plane, (:)Z'j = éeij, and the two NC parameters # and 6
are related by 0 = 402(1—a?)/0 [?]. When o = 1, which will lead to 6;; = 0,
, then the AC phase on NC phase space will return to the AC phase on
NC space, i.e. doycps = 0 and equations (40) and (41) will change into
equations (123) and (101) respectively.
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4, Noncommutative HMW Effect

I: Review of the HMW effect on 241 dimensional commutative space
time

The HMW effect corresponds to a topological phase related to a neu-
tral spin-1/2 particle with non-zero electric dipole moving in the mag-
netic field. The HMW effect was firstly discussed in 1993 by He and
Meckellar and a year later, independently by Wilkens. In 1998, Dowling,
Willianms and Franson point out that the HMW effect can be partially
tested using metastable hydrogen atoms. Just as the AB AC effect, the
HMW effect has the same importance in the literature, and the study
of the correction of the space (and momenta) non-commutativity to the
HMW effect will be meaningful.

In order to study the NC properties of HMW effect, a brief review of
the effect in 2+ 1 dimensional commutative space time is necessary. The
Lagrange of a spin-1/2 neutral particle with electric dipole ;. moving in
the electromagnetic field is given by

- | - 1 - |
L = ¢in" 0,0 — myyp — i3 petpot s Fy, . (44)

The last term in the Lagrangian represents the HMW effect. Using the
identity o"v; = (i/2)e"“’0,4, the Lagrangian becomes

B _ 1 -
L= ¢i7uau¢ - mWP + §M6FW¢UW¢, (45)

where F is the Hodge star of F, i.e. FW = %ewagF‘m. Similar as AB, AC
other topological effects, the HMW effect is also usually studied in 2+ 1
dimension, because the particle movies in a plane.

Same as the case in Noncommutative AC effect, we restrict the parti-
cle moves on a plane (say = — y plane), then the problem can be treated
in 24 1 space time, and use three 4 x 4 Dirac matrices, which satisfy the
following relation

Vi = g — iy o e Ay, (46)
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A particular representation is
VW= I®os, ' =idiag(l,—1) ® 09, 7* =il ® 0. (47)

We define
a=—ir"y'y’ = -7’0 = diag(l, -1) ® 03, (48)

then the Lagrangian in 2 + 1 dimension can further be written as
L = iy 0,1) — miptp — (1/2)apiceas, 0y (49)

By using Euler-Lagrange equation, the Dirac equation of motion for
a spin half neutral particle with a electric dipole moment . is

(i7,0" + S,y —m)y =0, (50)
where )
S, = —(1/2)apicenp . (51)
The solution to the Dirac equation have the form
e €Z¢HMW¢O7 (52)

where ), is the solution for electromagnetic field free case . The phase
in Eq.(24) is called HMW phase , and it has the form

€T 1 T ~
rmw :/ Sudzt = —QaMe/ Eapp P dat. (53)

The HMW phase above is the general HMW phase for a spin-1/2 neutral
particle passing through an electromagnetic field. When the neutral
particle moves through a pure static magnetic field, F reduced to FOi,
then we have

GbH]\N’V = —aAlle /I g(ﬁjpmdmj = —aAlle /1(% X é) ’ d‘/fa (54)

where £ is the unit vector in z direction and we assume that the magnetic
dipole moment is always along this direction.

II: The HMW phase in noncommutative quantum mechanics
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Now we are in the position to discuss the HMW topological phase
in NC quantum mechanics. First let’s consider the NC space case, the
Dirac equation for HMW effect becomes

[iﬂ/u(?“ -+ Sm/“ — m} *x 1 =0, (55)

i.e. just replace normal product to a star product, then the Dirac equa-
tion in commuting space will change into the Dirac equation in NC space.
We replace the star product in Dirac equation with usual product by
shift NC coordinates with a Bopp’s shift

. 1 R
T = x; — ieijpja Di = Di, (56)

as well as a shift for the vector for vector §,,
~ 1
Sy = Sp =S+ 56(1%0,&85/1,- (57)

Then the Dirac equation can be solved in the commuting space and the
non-commutative properties can be realized through the terms related
to 0. After the shift defined in Eq.(57), the Dirac equation becomes:

~ 1 ~
(47, 0" — (1/2)a/h’f€/zm’f(FOZ‘J T ielUpT&and)”/u —m)yp = 0. (58)

This equation is defined in commuting space and the coordinate non-
commutative effect appears in 0 related terms. It is easy to check that
the solution to this Dirac equation has the form

P = Oy, (59)

where 1), is the solution for electromagnetic field free case, and ggHMW is
the HMW phase in NC space, which is read

R 1 - ~af
. L
PHMW = _2a,u(i/ g,u,(}ﬁF da!
1 L ol g, .4 1 r oT Y S 7.0
= — 5 EpapF P dat — e €uapl’ PO F Y da . (60)

This is the general HMW phase for a spin-1/2 neutral particle moving
in a general electromagnetic field.
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Now let’s consider the situation where only static electric field exist.

Just like the case discussed in [?], the Hamiltonian of the particle in
commuting space has the form:

1 3 3

By using V- B =0, the Eq.(123) can be recast as

1 — u’B?
H=_—(p—jixB)’— 62
5 (D= X B) ==, (62)
where (i = u.0, then the velocity operator can be gotten
oOH 1 -
=—=—|p— (ii x B)]. 63
U o, m[pz (i )il (63)

From this equation we know that in non-commutative space, we have
p=mu + (i x B) +O(). (64)
Insert equation (??) to (??) and notice that
FoP — FY and 07 =067, 9% = 9" = 0, (65)
we have

brvw = daaw + ddnes (66)

where ¢ is the HMW phase in commuting space given by (91), the
added phase d¢pncg, related to the non-commutativity of space, is given
by

1 T p - — ~ -
dONCS = — 5l / eﬂmﬁe“‘j['rrwu + (fi X B)o|0gF" da"

1 ,
= Saucde [ ks + (ji x B),)(9: B*da’ — 0,B'da?), (67)

where k; = mv;, and the result here coincides with the result given in
reference [?], where the tedious star product calculation has been used.

When both space-space and momentum-momentum non-commutating
are considered, i.e. we study the problem on NC phase space, the Dirac
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equation for the HMW model is the same as the case on NC space, but
the star product and the shifts are defined in Eqgs.(??) and (??7). After
a similar procedure as in NC space, we got the Dirac equation on NC
phase space as:

! 1 %) n 1 TO n !
{—V* Pu — 27042/\/} 9/1,1/51;1/ - (1/2)3/%6/1@3[17@8 + 270429 ])Tﬁanﬂ]’\/l — m/}’z/) = 0, (68)
where m’ = m/a. The solution to (68) is

P = ei¢HNIW¢O7 (69)

where 1)y is the solution of Dirac equation for free particle with mass m’,
and ¢y stands HMW phase in NC phase space, and it has the form
below,

A 1 v o s
PHMW = —53/1@ / Epapl’ B ot
1 A 1 v oT a3 )
~5a2 / O;jx;dr; — L / €100 Do O F 7 dz". (70)
Equation (70)is the general HM'W phase in noncommutative phase space.

Once again for the case only static magnetic field exist, then the HMW
phase reduces to

Cumw = ¢umw + 0ONCPS, (71)
where
Y — [ 0z jda; - . [ eyte™ [mv + (fi x B)a)0pF " da
NCPS = =5 5 i idx; 2(12&1,11@! €,0i0€™” m'v, + ([ )03 2
1 "L — 1 i " . — 5
= 55 | Ouideit+ 5 saucbe’ [k + (i x B),|(9;B%dxt — 9,B'da?), (72)

in which £} = m'v;, p = m'v + (i x B); + O(0) has been applied and we
omit the second order terms in #. The term d¢ycps represents the non-
commutativity for both space and momentum. The first term in d¢ncps
is a contribution purely from the non-commutativity of the momenta,
the second term is a velocity dependent correction and the third term
is a correction to the vortex of magnetic field. In 2 dimensional non-
commutative plane, éij = éeij, and the two NC parameters § and 0 are



18

related by 0 = 40*(1 — a?)/6 [?]. When « = 1, which will lead to 6;; = 0,
then the d¢ncps returns to dpncs, namely, the HMW phase on NC phase
space will return to the HMW phase in NC space.
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5, Noncommutative AC Effect for spin-1 partcles

I: AC effect for spin-1 particles on a commutative space time

In this section by following Ref.[?] we review briefly the Aharonov-
Casher effect of a spin-1 particle on a commutative space time. The
Lagrangian for a free spin-1 particle of mass m is

L = ¢(i3°9, —m)¢ , (73)

where the 10 x 10 matrices (3, are generalization of the 4 x 4 Dirac gamma
matrices, and it can be chosen as follows|[?]-[?]

O O I o O O O —iKt
p_ 0004l L, Lo o0 s 4
I O o |’ O =57 0 of ’
o o o 0 —i K7 9] 0 0
with 7 = 1,2,3. The elements of the 10 x 10 matrices (3, are given by the
matrices
N 0 0 O 1 0 0
O=10 0 0], I=(0 1 0],
0O 0 0 0 0 1
0O 0 O 0 0 1 0 -1 0
St=ilo 0o -1, S*=4i|l 0 0 0|, S?=i|l1 0 0],
0O 1 0 -1 0 0 0O 0 O

o=(0 0 0), K'=(1 0 0), K*=(0 1 0), K)*=(0 0 1).
The above ( matrices satisfy the following relation

6V5>\5p + Bpﬁ)\ﬁu = ﬁug)\p + Bpgl/)\- (74)
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Other algebraic properties of the Kemmer [-matrices were given in
Ref.[?]; the metric tensor is g), = diag(1l,—1, -1, —1). The Kemmer equa-
tion of motion is

(180, —m)¢p = 0. (75)

The Lagrangian for a spin-1 neutral particle with a magnetic dipole
moment /i, interacting with the electromagnetic field has the form

L= 6060, + LSy FY —m) (76)

where F* is the field strength of the electromagnetic field; Sy is the
Dirac o), like spin operator, which can be defined as

Sh = 5 (B — Buh) (77)

It follows that in the presence of an electromagnetic field, the Kemmer
equation of motion of a spin-1 neutral particle with a magnetic moment
o 18
1
(14”0, + i,u/,»,,,SApFAp —m)p=0. (78)

The aim is to find a solution of the above equation, which can be written

in the following form )
6—153 J A dr CD(); (79)

where ¢, is a solution of (75); the spin-1 pseudo-vector operator ¢, in
(79) is defined as

b =

6= iz (80)

where ¢,),, is the Levi-Civita symbol in four dimensions. Now we need
to find the explicit form of the vector A’ in (79). To do this, first we
write Eq.(75) for ¢y in terms of ¢

(iﬁyay . m) 62-63 ff*A/. dr ¢ — 0. (81)

Then the equivalence of (78) and (81) can be obtained by imposing the
following two conditions

e*fzgg ["A-dr 51, eigg JTAdr _ ﬁu’ (82)
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and 1
~B" &AL = SimSa b = pmSuF . (83)
By comparing Eq. (82) with the Baker-Housdorf formula
—1 [ ONT v . v 1 . v
e BV N = 3 4 p(—i))[&, B7] + 5@(—2)\)2[53, &, 671 -, (84)

one obtains, &3, 5"] = 0; p in (84) stands for the path ordering of the in-
tegral in the phase. If v # 3 this commutation relation is automatically
satisfied. For v = 3, by using (74) and (80), one finds that the commu-
tator does not vanish. Therefore in order to fulfil the first condition the
particle is restricted to move in x — y plane, that is, p, = 0. In particular
93¢ = 0 and A} = 0. From second condition (83), by using (74), (77) and
(80), one obtains

All = —2/1/mE2 , A{Z - 2/1/777E1 . (85)

Thus the AC phase for a neutral spin-1 particle moving in a 2 4+ 1 space
time under the influence of a pure electric field produced by a uniformly
charged infinitely long filament perpendicular to the plane is

QSAC’ - 53]{A/ - dr = 2,um€3 f(EldICQ — EQdQZl) = 2Mm€3€lk f Eldilfk . (86)

The above equation can also be written as in Ref.[7]

bac=E P A dr =& [ (Vx A)-dS =2p,8 [ (V-E)dS = 2mésh ,  (87)

where ). is the charge density of the filament. This spin-1 AC phase is
a purely quantum mechanical effect and has no classical interpretation.
One may note that the AC phase for spin-1 particles is exactly the same

as in the case of spin-1, except that the spin and spinor have changed.

The factor of two shov%fs that the phase is twice that accumulated by a
Spin-% particle with the same magnetic dipole moment coupling constant,
in the same electric field.

II: AC effect for spin-1 particles on a non-commutative space

On a non-commutative space the coordinate and momentum opera-

tors satisfy the following commutation relations (we take i = ¢ = 1 unit)

[2i, 2] = iOi5, [P, pi] =0, [24,p5] = i, (88)
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where ©;; is an element of an antisymmetric matrix, it is related to the
energy scale and it represents the non-commutativity of the NC space;
z; and p; are the coordinate and momentum operators on a NC space.

By replacing the usual product in (78) with a star product (Moyal-
Weyl product), the Kemmer equation for a spin-1 neutral particle with
a magnetic dipole moment ,,, on the NC space, can be written as

1
(14”0, + 5/1,,15,\,)F/\” —m)*x¢p =0, (89)

The star product between two functions is defined by,

(F )(x) = 9905 f(m)g(a) = F(2)g(x) + S Ou0Lf Oyl + OO7),  (90)

here f(z) and g(x) are two arbitrary functions.
On a NC space the star product can be changed into an ordinary
product by a Bopp’s shift, that is, by shifting coordinates x, with

1
2
Now, let us consider the non-commutative Kemmer equation (89). To

replace the star product in (89) with an ordinary product, the F),, must,
up to the first order of the NC parameter O, be shifted [?] as

O,.p". (91)

'rl/_>':%l/:'7;1/_

A 1
Fox— Fn=F,\+ Egpappaan/)\- (92)

which is equivalent to the Bopp’s shift (91). Then the Kemmer equation
on a NC space has the form

1 ~
(16”0, + SHm Sy ™Y — m)¢ = 0. (93)

In a similar way as the commuting space, the solution of the above
equation can also be written as

$ = el A dr b (94)
To determine A’ we write the free Kemmer equation as

(Zﬁyﬁy_m) eigngA’.dr¢:o (95)
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The equivalence of (93) and (95) gives the following two conditions

6—i§3 fr A’ dr BV ei§3 fT - dr — ﬁu (96)

and .
_6V£3Aly¢ - §:UJmS/\pF)\p¢ = NmSOZFOZCb (97)
By using the Baker-Housdorf formula (84), the first condition (96) im-
plies that, [£3,5"] = 0. If v # 3 then this commutation relation is au-

tomatically satisfied. For v = 3, by using (74) and (80), one finds that
the commutator does not vanish. Therefore in order to fulfil the first
condition we restrict ourselves to 2 4+ 1 space-time. In particular d3¢ = 0
and Aj = 0. From second condition (97), by using (74), (77) and (80),
one obtains

A ~ 1 ..

All — _2,umF02 — _2/~LmF02 - 2M7rL§®UpiajF02 — _2,umE‘2 - ,umegupiajEQ

~ A 1 ..

Ay = 2y O = 24, FO' + Q/L,7,§(~)’J])ia7-F01 = 2 By — im0 pi0; Er (98)

with 0V = e, O% = O = (; €V = —€/’, ¢!2 = +1. Thus the AC phase for
a neutral spin-1 particle moving in a 2+ 1 non-commutative space under
the influence of a pure electric field produced by a uniformly charged
infinitely long filament perpendicular to the plane is

bac = & j{ A’ dr = 2,638 f Eydxy + pun&s0ee™ j{piajEldxk : (99)

In a similar way as in spin-; [?] [?], the momentum on a NC space for a
spin-1 neutral particle can also be written as

pi = mu; + (E x [i); + O(0), (100)

where i = 2um§, and S is the spin operator of the spin-1. By inserting
(100) into (99), we have

bac = dac + dpnes, (101)

where ¢ 0 is the AC phase in (86) on a commuting space; the additional
phase d¢ycg, related to the non-commutativity of space, is given by

SdNCs = pmEs0e ™ ]{[kz — (L % E)/]ﬁjE/dxA (102)



24

where k; = muv; is the wave number; &3 represents spin degrees of freedom.
If the spin of the neutral particle along the 2 direction, namely, i =

2um33E, k is a unite vector in the z direction, then our results here are
the same as the result of Ref. [?], where the star product calculation
has been used.

III: AC effect for spin-1 particles on a non-commutative phase space

In section above we have investigated the AC effect for a neutral
spin-1 particle on a NC space, where space-momentum, and space-
space are non-commuting, but momentum-momentum are commuting.
The Bose-Einstein statistics in non-commutative quantum mechanics re-
quires both space-space and momentum-momentum non-commutating.
The NC space with non-commuting momentum-momentum is called NC
phase space. In this section we study the AC phase on a NC phase space.
On a NC phase space, the commutation relation in (88) should be re-
placed by

[Di, bj] = 194, (103)
where O is the antisymmetric matrix, its elements represent the non-
commutative property of the momenta. Then the Kemmer equation for
AC problem on a NC phase space has the form

1
(=B"Pv + 1Sy FY = m) 5 6 = 0. (104)

The star product in (104) on a NC phase space can be replaced by
the usual product in two steps, first we need to replace r; and p; by a

generalized Bopp’s shift as
1

A A
T, — T, = Qx, — Z@V/\p ,

1 .
Py — Dy = ap, + —@V,\:I;A, (105)
2x

where « is the scaling parameter, and it is related to the non-commutativity
of the phase space via OO0 = 40?(a? — 1) -1, here I is a unit matrix. Then
we also need to rewrite the shift in (92) as

A 1
Fo— Fo=alF,,+ TGpappaon\- (106)
o



25

Thus the Kemmer equation for AC problem on a NC phase space has
the form

| ~
(—=B"py + §umSApﬁp —m)¢ =0, (107)
Since a # 0, the above equation can be written as
14 14 1 0 1 oT )
( - ﬁ Py — ﬁ ()1//\3j + :LLNIS/\/)(F)\/ =+ 2y QO pUaTF/\[) - 77?//)@ = 0. (108)
where m' = m/ a. We write the above equation in the following form
Ny L 2 (109)

To have the equivalence of (108) and (109), we impose the following two
conditions

e*i&a [TA dr BV €i§3 [TA dr _ BV : (110)
and |
~B' 66 = oS Vo = TSy (111)

In an analogous way as in NC space, from (110) and (111) one may
obtain

. 2 ; 1 .. ,0 i
Al = EHm po2 20t % = 24y = O p;0; F*? = 241, By — Hon? pi0;Es
« 200 ' a?
- 2 1 Um, 1 ,[ 4 1/7” 9 [ a
A/Q = 2 Em ot — 2,LLmF01 + 2, 7@"/]%0/'}701 = 2 By + / 0 pi0; Ey
o 202 / a? /
F— (112

Thus the AC phase for a neutral spin-1 particle moving in a 2 + 1 non-
commutative phase space under the influence of a pure electric field
produced by a uniformly charged infinitely long filament perpendicular
to the plane is given by

i _ A /

¢AC — 2()/2 %@I/)\T dx” _|_£ 74./4 dr
6 l

= 7> eV idw; 4 2pmEse™ 74 E,dzy, +um£3 ¢ Ttk %p,(? Eydzy, (113)
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By pi =k + (E x i); + O(6), and k! = mlv;, i = 2u,S, one obatains

Pac = Pac + 0PNncs + 0PNCPs, (114)

where ¢4¢ is the AC phase in (86) on a commuting space; d¢ncs is the
space-space non-commuting contribution to the AC phase in (86) , and
its explicit form is given in (102); the last term d¢ycps is the momentum-
momentum non-commuting contribution to the AC phase in (86), and
it has the form

- 1 U .
(SqﬁNopS = €I*I$jdfli7j + (7 - 1)/1/,,1,63951‘]€[A 7{{]?: — (/7: X E),-]@,-Egda:k (115)

which represents the non-commutativity of the momenta. The first term
in (115) comes from the momentum-momentum non-commutativity; the
second term is a velocity dependent correction and does not have the
topological properties of the commutative AC effect and could modify
the phase shift. the third term is a correction to the vortex and does
not contribute to the line spectrum. In 2-dimensional non-commutative
plane, (:)ij = éeij, and the two NC parameters § and 0 are related by
0 = 40*(1 — a?)/0 [?]. When a = 1, which leads to 6;; = 0, the AC phase
on a NC phase space case reduces to the AC phase on a NC space case,
i.e. d¢ncps =0 and equation (114) changes into equation (101).
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6, Conclusions.
The main results in my talk is given as follows.

(1) Representation of z;, p; (of NC phase space) in terms of commutative
coordinates and momenta:

B = oz — 5.0,
) (116)
Pi = api + 5201,
(2) Schriodinger equation:
On NC space
L 1
H(&;,pi) = H(w; — ﬁ@ijpjapi)q/) = E. (117)
On NC phase space,
1 J -

(3) The AC effect
On NC Phase space for spin-1/2

L e - L o 1 ij [ 5 o 2.1 gl g2
5§bNCPS - M/ @Z-jafjdxi + @’7 o ,LL,mQE J / [k] + (E X ILL>J](81E dx” — (DZE dx )

On NC Phase space for spin-1

- 1 o L
dONCPS = e’ jdr; + (? — 1) &0V 74 k] — (i x E);]0;Eidz{120)

2002 .

(4) The HMW effect,
On NC Phase space,for spin-1/2

CHMw = QMW + 0ONCPS, (121)
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where
1 T _ 1 z . o
- e S n.ap / — 0i
doNCPSs = 2@2/ 0ijxjdx; 2&2aue/ €0i0€"” M vo + (i X B)y|0gF ™ da
1 r

1 o .
h _m?/ Oijjdzi + Maﬂeeél‘]/ (K} + (fi x B);|(8:;B*dz" — 0;B'dx®), (1

On NC Phase space for spin-1

1 - )
doners = 5 7{ O dr” + & 7( a . dr
0 ;. |
= ng Yxidx; + Z/Lefgelk]{Bldxk

6 .. .
ey gt F (k] + (B x fi);)0; Biday (123)
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