$\mu \rightarrow e\gamma$ and $\mu \rightarrow ee\bar{e}$ in a model of electroweak-scale right-handed neutrinos

刘继元

南开大学

Based on J.-P. Bu, Y. Liao, J.-Y. Liu, arXiv: 0802.3241 [hep-ph]

Ji-Yuan Liu

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

イロト イポト イヨト イヨト

2 Model

3 Analytic result

4 Numerical analysis

5 Summary

▲ロト▲御と▲臣と▲臣と 臣 のへで

Ji-Yuan Liu

Introduction		
Outline		

2 Model

- 3 Analytic result
- 4 Numerical analysis

5 Summary

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Ji-Yuan Liu

Neutrino Mass - Beyond SM

- There is no neutrino mass in SM.
 No right-handed neutrinos exist in SM.
- Experimental fact from neutrino oscillation:
 - Solar Neutrino Experiment: SNO, Homestake, SAGE, GNO, Kamiokande and Super-K, Borexino, ···
 - 2 Atmospheric Neutrino Experiment: Super-K. ···
 - 3 Accelerator and reactor neutrino experiment: CHOOZ, Double-CHOOZ, LSND, K2K, Neutrino Factory ····

イロン イロン イヨン イヨン

Introduction			
Seesaw	Mechanisr	n	

How is a tiny mass possible?

Consider mass matrix of v_L and v_R :

$$-\frac{1}{2}\left(\overline{v_L},\overline{v_R^C}\right)\left(\begin{array}{cc}0&m_D\\m_D&m_R\end{array}\right)\left(\begin{array}{c}v_L^C\\v_R\end{array}\right)+\mathrm{h.c.}$$

Eigenvalues for $m_R \gg m_D$:

$$\sim m_R$$
 (huge) and $\sim -rac{m_D^2}{m_R}$ (tiny)

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

Э

・ロン・(部)・・ヨン・ヨン・

Introduction			
Seesaw	Mechanisr	n	

Standard seesaw

For example,
$$\frac{m_D^2}{m_R} \sim \text{eV}$$
 and $m_D \sim \text{GeV}$ desired $\Rightarrow m_R \sim 10^{18} \text{eV}$
A huge scale whose phys is inaccessible at colliders!

TeV seesaw

Desired both
$$rac{m_D^2}{m_R} \sim {
m eV}$$
 and $m_R \sim {
m TeV}$

by fine-tuning or other mechanisms.

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

э

< □ > < □ > < □ > < □ > < □ > .

Lepton Flavor Violation (LFV)

µ decay modes

$$\begin{split} &\text{BR}(\mu\to e\gamma) < 1.2\times 10^{-11} \ \text{MEGA Colla., 1999} \\ &\text{hopefully to } 10^{-13}\sim 10^{-14} \ \text{ in near future MEG Colla.} \end{split}$$

 $BR(\mu \rightarrow ee\bar{e}) < 1.0 \times 10^{-12}$ SINDRUM Colla., 1988

τ decay modes

Impressive bounds on LFV τ decays start to appear at Belle and BaBar, but not comparable to μ decays in foreseeable future.

イロン 不得 とくほど 不良 とうせい

	Model		
Outline			

2 Model

3 Analytic result

4 Numerical analysis

5 Summary

Ji-Yuan Liu

	Model		
Mativation			
NOUVATION			

- Rich phenomenology accessible if $m_R \sim \Lambda_{\rm EW}$
- Associate m_R with SM non-singlets' vev, and m_D with SM singlet vev
- RH neutrinos also active ⇒ Rich lepton flavor structure

<ロ> <四> <四> <四> <三</td>

	Model		
Fields			

Same gauge group as in SM. Matter fields extended by mirror fermions:

ordinary :
$$F_L = \begin{pmatrix} n_L \\ f_L \end{pmatrix}$$
 (2, Y = -1), f_R (1, -2);
mirror : $F_R^M = \begin{pmatrix} n_R^M \\ f_R^M \end{pmatrix}$ (2, -1), f_L^M (1, -2)

Besides SM scalar doublet Φ, new scalars are

 ϕ (1,0), χ (3,2),

plus ξ (3,0) for preserving custodial sym. Chanowitz-Golden, 1985

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

・ロン ・ 同 と ・ ヨ と ・ ヨ と

	Model	Analytic result	Numerical analysis	
VEV's				
	$\langle \Phi \rangle = \frac{v_2}{\sqrt{2}} \begin{pmatrix} 0\\ 1 \end{pmatrix}$	$\Big), \langle \phi \rangle = v_1, \langle \chi \rangle =$	$v_3 \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right),$	
	$v_{2,3} \sim \Lambda_{\rm EW}; \ v_1$	required to be tiny		

Yukawa couplings

$$\begin{split} -\mathscr{L}_{\Phi} &= y\overline{F_L}\Phi f_R + y_M\overline{F_R^M}\Phi f_L^M + \mathrm{h.c.}, \\ -\mathscr{L}_{\phi} &= x_F\overline{F_L}F_R^M\phi + x_f\overline{f_R}f_L^M\phi + \mathrm{h.c.}, \\ -\mathscr{L}_{\chi} &= \frac{1}{2}z_M\overline{(F_R^M)^C}(i\tau^2)\chi F_R^M + \mathrm{h.c.}. \end{split}$$

NanKai Univ.

э

▲ロン ▲圖 と ▲ ヨ と ▲ ヨ と

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

	Model		
Lenton N	lasses		

Charged lepton masses

$$-\mathscr{L}_{\mathrm{m}}^{f} = \left(\overline{f_{L}}, \overline{f_{L}^{M}}\right) m_{f} \left(\begin{array}{c} f_{R} \\ f_{R}^{M} \end{array}\right) + \mathrm{h.c.},$$
$$m_{f} = \left(\begin{array}{c} \frac{V_{2}}{\sqrt{2}}y & v_{1}x_{F} \\ v_{1}x_{f}^{\dagger} & \frac{V_{2}}{\sqrt{2}}y_{M}^{\dagger} \end{array}\right), \quad X_{L}^{\dagger}m_{f}X_{R} = \mathrm{diag}(m_{\alpha})$$

Neutrino masses

$$-\mathscr{L}_{m}^{n} = \frac{1}{2} \left(\overline{n_{L}}, \overline{(n_{R}^{M})^{C}} \right) m_{n} \left(\begin{array}{c} n_{L}^{C} \\ n_{R}^{M} \end{array} \right) + \text{h.c.},$$
$$m_{n} = \left(\begin{array}{c} 0 & v_{1} x_{F} \\ v_{1} x_{F}^{T} & v_{3} z_{M} \end{array} \right), \quad \mathbf{Y}^{T} m_{n} \mathbf{Y} = \text{diag}(m_{i})$$

NanKai Univ.

э

イロン イロン イヨン イヨン

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

NAL teor te les teste de la contete de transference					
	Model				

Mixing in leptonic gauge interactions

$$\begin{split} \mathscr{L}_{g} &= g_{2} \left(j_{W}^{+\mu} W_{\mu}^{+} + j_{W}^{-\mu} W_{\mu}^{-} + J_{Z}^{\mu} Z_{\mu} \right) + e J_{em}^{\mu} A_{\mu}, \\ \sqrt{2} j_{W}^{+\mu} &= \bar{v} \gamma^{\mu} \left(V_{L} P_{L} + V_{R} P_{R} \right) \ell, \\ c_{W} J_{Z}^{\mu} &= \frac{1}{2} \overline{v} \gamma^{\mu} \left(V_{L} V_{L}^{\dagger} P_{L} + V_{R} V_{R}^{\dagger} P_{R} \right) v \\ &- \frac{1}{2} \bar{\ell} \gamma^{\mu} \left(V_{L}^{\dagger} V_{L} P_{L} + V_{R}^{\dagger} V_{R} P_{R} \right) \ell + s_{W}^{2} \bar{\ell} \gamma^{\mu} \ell, \\ J_{em}^{\mu} &= - \bar{\ell} \gamma^{\mu} \ell \end{split}$$

Nonunitarity of V_L (V_R) induces FCNC in both neutral and charged sectors. This causes interesting phenomena in $\mu \rightarrow e\gamma$.

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

イロン イボン イヨン イヨン

	Analytic result	
- ···		
Outline		

2 Model

3 Analytic result

4 Numerical analysis

5 Summary

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Ji-Yuan Liu

	Analytic result	
$\mu \rightarrow e \gamma$		

$$\begin{aligned} \mathscr{A}_{W} &= \frac{e}{(4\pi)^{2}} \sqrt{2} G_{F} q^{\beta} \varepsilon^{\alpha *} \\ &\times \bar{u}_{e} i \sigma_{\alpha\beta} \left[m_{\mu} (V_{1} P_{R} + V_{2} P_{L}) \mathscr{F}(r_{i}) + m_{i} (V_{3} P_{L} + V_{4} P_{R}) \mathscr{G}(r_{i}) \right] u_{\mu}, \\ \mathscr{A}_{Z} &= \frac{e}{(4\pi)^{2}} \sqrt{2} G_{F} q^{\beta} \varepsilon^{\alpha *} \\ &\times \bar{u}_{e} i \sigma_{\alpha\beta} m_{\mu} \frac{2}{3} \left[-2(1+s_{W}^{2}) V_{1} P_{R} + (3-2s_{W}^{2}) V_{2} P_{L} \right] u_{\mu} \end{aligned}$$

NanKai Univ.

æ

Ji-Yuan Liu

	Analytic result	

$$\begin{split} V_1 &= (V_L^{\dagger})_{ei} (V_L)_{i\mu}, \qquad V_2 &= (V_R^{\dagger})_{ei} (V_R)_{i\mu}, \\ V_3 &= (V_R^{\dagger})_{ei} (V_L)_{i\mu}, \qquad V_4 &= (V_L^{\dagger})_{ei} (V_R)_{i\mu}. \end{split}$$

Loop functions:

$$\mathcal{F}(r) = \frac{1}{6(1-r)^4} \left(10 - 43r + 78r^2 - 49r^3 + 4r^4 + 18r^3 \ln r \right),$$

$$\mathcal{G}(r) = \frac{1}{(1-r)^3} \left(-4 + 15r - 12r^2 + r^3 + 6r^2 \ln r \right).$$

Summation over neutrino index *i* understood in both amplitudes.

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

Э

イロン イロン イヨン イヨン

	Analytic result	
Parameters		

Too many free parameters - further approximations required

1 Light neutrinos treated safely as massless.

2 Heavy neutrinos considered almost degenerate, m_h .

Free parameters: *m_h* and 6 complex combinations:

$$\begin{split} V_{1}^{l} &= \sum_{i=1}^{3} (V_{L}^{\dagger})_{ei} (V_{L})_{i\mu}, \qquad V_{2}^{l} &= \sum_{i=1}^{3} (V_{R}^{\dagger})_{ei} (V_{R})_{i\mu}, \\ V_{1}^{h} &= \sum_{i=4}^{6} (V_{L}^{\dagger})_{ei} (V_{L})_{i\mu}, \qquad V_{2}^{h} &= \sum_{i=4}^{6} (V_{R}^{\dagger})_{ei} (V_{R})_{i\mu}, \\ V_{3}^{h} &= \sum_{i=4}^{6} (V_{R}^{\dagger})_{ei} (V_{L})_{i\mu}, \qquad V_{4}^{h} &= \sum_{i=4}^{6} (V_{L}^{\dagger})_{ei} (V_{R})_{i\mu} \end{split}$$

イロト イポト イヨト イヨト

		Analytic result	
	14		
Final res	uit		

$$\begin{array}{rcl} \bullet & (r_h = m_h^2/m_W^2) \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$$

≣ ∽ ९ ९ () NanKai Univ.

・ロト ・聞と ・ヨト ・ヨト

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

	Analytic result	
$\mu ightarrow eee$		

Via tree level FCNC. 2 diagrams.

$$\begin{split} \mathrm{BR}(\mu \to e e \bar{e}) &= \frac{1}{2} |V_1^{\prime} + V_1^{h}|^2 \left[(1 - 2 s_W^2)^2 + 2 s_W^4 \right] \\ &+ \frac{1}{4} |V_2^{\prime} + V_2^{h}|^2 \left[(1 - 2 s_W^2)^2 + 8 s_W^4 \right]. \end{split}$$

NanKai Univ.

э

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

		Numerical analysis	
Outline			

2 Model

3 Analytic result

4 Numerical analysis

5 Summary

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国|||の��

Ji-Yuan Liu

			Numerical analysis	
Generally	v Estimativ	an		
Generali	y Lounau			

For all 6 $V_i^{l,h}$ of similar magnitude and $m_h \sim m_W$

$$rac{{
m BR}(\mu
ightarrow {
m e} \gamma)}{{
m BR}(\mu
ightarrow {
m e} {
m e} ar{
m e})} \sim rac{lpha}{\pi} \sim 2 imes 10^{-3}$$

- Better quantitative feel can only be obtained after further simplifications.
- To demonstrate relevance of our results, we consider some scenarios by sampling randomly V_i^{l,h} in certain ranges.

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

<ロ> <四> <四> <四> <三</td>

		Numerical analysis	
Scenario	Δ		

$$\bullet Y = \begin{pmatrix} y_{ul} & y_{ur} \\ y_{dl} & y_{dr} \end{pmatrix} \quad y_{..}: 3 \times 3$$

■ Suppose *y*_{ur} is real.

$$\Rightarrow$$
 $y_{ur} = y_{dl} = 0_3$, $y_{dr} = 1_3$, $y_{ul}^{\dagger} = y_{ul}^{-1}$ so that all but V_1^l , V_2^h vanish.

- Re and Im parts of V_1^l , V_2^h are sampled between -2×10^{-6} and $+2 \times 10^{-6}$. $m_h = 50, 100, 200, \dots, 10^3$ GeV.
 - \Rightarrow For BR($\mu \rightarrow ee\bar{e}) < 10^{-12}$, we have BR($\mu \rightarrow e\gamma) \sim 10^{-14}$ at the edge of MEG precision.

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

イロト イポト イヨト イヨト

		Numerical analysis	
<u> </u>	_		
Scenaric) B		

■
$$V_3^h = V_4^h = 0$$
 while Re and Im parts of $V_{1,2}^l$, $V_{1,2}^h$ run within $[-1,1] \times 10^{-6}$. m_h as in Scenario A.

 \Rightarrow Slightly larger BR($\mu \rightarrow e\gamma$).

Ji-Yuan Liu

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

NanKai Univ. Page 23

æ

		Numerical analysis	
Scenari	o C		

Only contribution of light neutrinos important:

Re and Im parts of $V_{1,2}^{l}$ within $[-1.5, 1.5] \times 10^{-6}$ while $V_{1,2,3,4}^{h} = 0$. \Rightarrow Most points drop in the region with BR $(\mu \rightarrow e\gamma) \lesssim a$ few $\times 10^{-14}$ for BR $(\mu \rightarrow ee\bar{e}) < 10^{-12}$.

But better analysis is possible:

$$\mathrm{BR}(\mu \to \mathrm{e}\gamma) \approx 10^{-4} \left[\frac{0.0064}{V_1^{\prime}} |^2 + 102 |V_2^{\prime}|^2 \right],$$

destructive interf between W&Z graphs

イロト イポト イヨト イヨト 一臣

$${
m BR}(\mu
ightarrow ee\bar{e}) pprox 0.20 |V_1'|^2 + 0.18 |V_2'|^2.$$

NanKai Univ.

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

	Analytic result	Numerical analysis	
If no Z graph, $0.0064 - V_1' ^2$ - unitarity violatio	$ ightarrow$ 25: $\mu ightarrow$ en in light se	$e\gamma$ sets stringent bound on ctor Antusch et al, 2006	

- When FCNC appears in charged sector, no useful bound on $|V_1'|^2$ retains. But a stringent one comes from $\mu \rightarrow ee\bar{e}$: $|V_1'|^2 < 5 \times 10^{-12}$
- The largest numbers for both that one can expect are

$${
m BR}(\mu
ightarrow e \gamma) \lesssim 5.7 imes 10^{-13}, \ {
m BR}(\mu
ightarrow e e ar{e}) \lesssim 10^{-12}$$

In particular, not possible for both to reach $\sim 10^{-12}$.

<ロ> <四> <四> <四> <三</td>

		Numerical analysis	
Coord	- D		
Scenario	0 D		

How important is the mixed effect between LH and RH CC currents involving light charged leptons and heavy neutrinos?

Difficult to get an exact handle of $V_j^{h,l}$ since heavy charged lepton masses set in via $X_{L,R}$.

■ $V_1^{l,h}$, $V_2^{l,h}$ within $[-1,1] \times 10^{-6}$; $V_{3,4}^h$ within $[-1,1] \times 10^{-9}$. $m_h = 50, \ 100, \ 150, \cdots, \ 500 \ \text{GeV}$.

 \Rightarrow BR($\mu \rightarrow e\gamma$) can reach 10⁻¹³ without breaking BR($\mu \rightarrow ee\bar{e}$).

	Numerical analysis	

Figure: Sampled points for BR($\mu \rightarrow ee\bar{e}$) (horizontal, in units of 10⁻¹²) and BR($\mu \rightarrow e\gamma$) (vertical, in units of 10⁻¹⁴) for the four scenarios described in the text. The dashed vertical line shows the current upper bound on BR($\mu \rightarrow ee\bar{e}$).

		Summary
Outline		
Outline		

2 Model

3 Analytic result

4 Numerical analysis

5 Summary

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Ji-Yuan Liu

		Summary
Summary		

Observation of LFV charged lepton decays

 \Rightarrow non-trivial new phys associated with origin of neutrino mass

■ In a model of heavy neutrinos at Λ_{EW} , $\mu \rightarrow e\gamma$ can reach or be within MEG precision without breaking BR($\mu \rightarrow ee\bar{e}$).

But it is generally impossible to reach $\sim 10^{-12}$ for both.

■ In a special scenario where light neutrinos are only important, $\mu \rightarrow e\gamma$ cannot set a useful bound on unitarity violation in the light lepton sector, but $\mu \rightarrow ee\bar{e}$ can.

The best one can expect is:

 ${
m BR}(\mu
ightarrow e \gamma) \lesssim 5.7 imes 10^{-13}, \ {
m BR}(\mu
ightarrow e e ar{e}) \lesssim 10^{-12}$

		Summary
The Field		
Ine End		

谢谢!

Ji-Yuan Liu

Talk at The 10th Conference on Particle Physics, Apr. 27th, 2008

NanKai Univ. Page 30