Polarizations of $B \rightarrow VV$ in QCD factorization

杨德山

中国科学院研究生院

Based on collaborations with M.Beneke and J.Rohrer

第十届全国粒子物理学术会议April 2008

Motivation

 $B \rightarrow VV$ decays share the roles of $B \rightarrow PP, PV$ decays in

- the determination of CKM matrix elements, especially the angles(phases):
 - sin 2 β and cos 2 β from $B \rightarrow J/\Psi K^*$;
 - sin 2 α from $B \rightarrow \rho \rho$;

- new physics search
 - direct search for the unexpected large branching ratios of rare decays in the SM;
 - more new physics sensitive observables in $B \rightarrow VV$: polarizations, phases (phase diffences) of helicity amplitudes

Plan of talk

- 1. Helicity amplitudes of $B \rightarrow VV$
- 2. Current experimental status
- 3. QCD factorization formula for $B \rightarrow VV$
- 4. Phenomenologies of $B \rightarrow VV$
 - Tree-dominated decays $(B \rightarrow \rho \rho)$
 - Penguin-dominated decays $(B \rightarrow \phi K^* \text{ and } \rho K^*)$
- 5. Summary

Based on the works collaborated with M.Beneke and J. Rohrer

- "Branching fractions, polarization and asymmetries of $B \rightarrow VV$ decays", Nucl. Phys. B774, 64-101, 2007;
- "Enhanced electroweak penguin amplitude in $B \rightarrow VV$ decays", Phys. Rev. Lett. 96, 141801, 2006.

Helicity amplitudes of $B \rightarrow VV$

General decay amplitude of $B(p_B) \rightarrow V_1(p_1, \eta^*)V_2(p_2, \epsilon^*)$

$$\mathcal{A}\left(B \to V_1 V_2\right) = i \,\eta^{*\mu} \epsilon^{*\nu} \left(S_1 g_{\mu\nu} - S_2 \frac{p_{B\mu} p_{B\nu}}{m_B^2} + i S_3 \varepsilon_{\mu\nu\rho\sigma} \frac{p_1^{\rho} p_2^{\sigma}}{p_1 \cdot p_2}\right)$$

With definite helicity,

$$\mathcal{A}_0 = \mathcal{A}(B \to V_1(p_1, \eta_0^*) V_2(p_2, \epsilon_0^*)) = \frac{im_B^2}{2m_1 m_2} \left(S_1 - \frac{S_2}{2} \right) ,$$

$$\mathcal{A}_{\pm} = \mathcal{A}(B \to V_1(p_1, \eta_{\pm}^*) V_2(p_2, \epsilon_{\pm}^*)) = i \left(S_1 \mp S_3 \right) .$$

Or we can define transversity amplitudes

$$\mathcal{A}_{\parallel,\perp} = \left(\mathcal{A}_{+} \pm \mathcal{A}_{-}\right)/\sqrt{2}$$

 \mathcal{A}_0 , \mathcal{A}_{\parallel} are CP-even, and \mathcal{A}_{\perp} is CP-odd.

 \Rightarrow 6 flavor-tagged helicity amplitudes, total 10 independent observables;

Definitions of observables

• flavor-tagged definitions

$$f_{L,\parallel,\perp}^{B} = \frac{|\mathcal{A}_{0,\parallel,\perp}|^{2}}{|\mathcal{A}_{0}|^{2} + |\mathcal{A}_{\parallel}|^{2} + |\mathcal{A}_{\perp}|^{2}},$$

$$f_{L,\parallel,\perp}^{\bar{B}} = \frac{|\bar{\mathcal{A}}_{0,\parallel,\perp}|^{2}}{|\bar{\mathcal{A}}_{0}|^{2} + |\bar{\mathcal{A}}_{\parallel}|^{2} + |\bar{\mathcal{A}}_{\perp}|^{2}},$$

• flavor-averaged quantities and asymmetries

$$f_{h} = \frac{1}{2} \left(f_{h}^{\bar{B}} + f_{h}^{B} \right), \qquad A_{CP}^{h} = \frac{f_{h}^{B} - f_{h}^{B}}{f_{h}^{\bar{B}} + f_{h}^{B}}$$
$$\phi_{h} \equiv \phi_{h}^{\bar{B}} - \Delta \phi_{h} \pmod{2\pi}$$
$$\equiv \phi_{h}^{B} + \Delta \phi_{h} \pmod{2\pi}, \qquad -\frac{\pi}{2} \le \Delta \phi_{h} < \frac{\pi}{2}$$

 $h = L, \parallel, \perp$

• In absence of *CP* violation, $A_{CP}^h = 0$ and $\delta \phi_h = 0$.

Definitions of observables (Belle)

• Time dependent observables:

$$\begin{split} \Gamma(\bar{B}^{0}(B^{0})(t) \to V_{1}V_{2}) &= e^{-\Gamma_{B}t} \sum_{\lambda \leq \sigma} \left(\Lambda_{\lambda\sigma} \pm \Sigma_{\lambda\sigma} \cos\left(\Delta m_{B}t\right) \right) \\ &\mp \rho_{\lambda\sigma} \sin\left(\Delta m_{B}t\right) \left(g_{\lambda}g_{\sigma} \right), \end{split}$$

with

$$\begin{split} & \wedge_{\lambda\lambda} = \frac{1}{2} (|A_{\lambda}|^2 + |\bar{A}_{\lambda}|^2), & \Sigma_{\lambda\lambda} = \frac{1}{2} (|A_{\lambda}|^2 - |\bar{A}_{\lambda}|^2), \\ & \wedge_{\perp i} = -\operatorname{Im}(A_{\perp}A_i^* - \bar{A}_{\perp}\bar{A}_i^*), & \wedge_{\parallel 0} = \operatorname{Re}(A_{\parallel}A_0^* + \bar{A}_{\parallel}\bar{A}_0^*), \\ & \Sigma_{\perp i} = -\operatorname{Im}(A_{\perp}A_i^* + \bar{A}_{\perp}\bar{A}_i^*), & \Sigma_{\parallel 0} = \operatorname{Re}(A_{\parallel}A_0^* - \bar{A}_{\parallel}\bar{A}_0^*), \\ & \rho_{\perp i} = \operatorname{Re}\left(\frac{q}{p}(A_{\perp}^*\bar{A}_i + A_i^*\bar{A}_{\perp})\right), & \rho_{\perp \perp} = \operatorname{Im}\left(\frac{q}{p}A_{\perp}^*\bar{A}_{\perp}\right), \\ & \rho_{\parallel 0} = -\operatorname{Im}\left(\frac{q}{p}(A_{\parallel}^*\bar{A}_0 + A_0^*\bar{A}_{\parallel})\right), & \rho_{ii} = -\operatorname{Im}\left(\frac{q}{p}A_i^*\bar{A}_i\right), \end{split}$$

where i = 0, ||. These 18 observables can have connections with the observables used by BaBar collaborations if one uses relevant normalization and neglects the small CP asymmetries.

Picture of *B* **non-leptonic two-body decays**

- Basic idea: to separate the contribution from different scales;
- Separation of m_W and m_b scale by the weak Hamiltonian

$$\mathcal{H}_{eff} = \sum_{i} C_i(\mu) Q_i(\mu)$$

– Separation of m_b and lower scales

 $\langle M_1 M_2 | Q_i(\mu) | \bar{B} \rangle =?$

Tree operators:

$$Q_1^u = (\bar{u}_{\alpha}b_{\alpha})_{V-A}(\bar{q}_{\beta}u_{\beta})_{V-A} \quad Q_1^c = (\bar{c}_{\alpha}b_{\alpha})_{V-A}(\bar{q}_{\beta}c_{\beta})_{V-A}$$
$$Q_2^u = (\bar{u}_{\alpha}b_{\beta})_{V-A}(\bar{q}_{\beta}u_{\alpha})_{V-A} \quad Q_2^c = (\bar{c}_{\alpha}b_{\beta})_{V-A}(\bar{q}_{\beta}c_{\alpha})_{V-A}$$

QCD penguin operators:

$$Q_{3} = (\bar{q}_{\alpha}b_{\alpha})_{V-A} \sum_{q'} (\bar{q}'_{\beta}q'_{\beta})_{V-A} \quad Q_{4} = (\bar{q}_{\beta}b_{\alpha})_{V-A} \sum_{q'} (\bar{q}'_{\alpha}q'_{\beta})_{V-A}$$
$$Q_{5} = (\bar{q}_{\alpha}b_{\alpha})_{V-A} \sum_{q'} (\bar{q}'_{\beta}q'_{\beta})_{V+A} \quad Q_{6} = (\bar{q}_{\beta}b_{\alpha})_{V-A} \sum_{q'} (\bar{q}'_{\alpha}q'_{\beta})_{V+A}$$

EW penguin operators:

$$Q_{7} = \frac{3}{2} (\bar{q}_{\alpha} b_{\alpha})_{V-A} \sum_{q'} e_{q'} (\bar{q}_{\beta}' q_{\beta}')_{V+A} \quad Q_{8} = \frac{3}{2} (\bar{q}_{\beta} b_{\alpha})_{V-A} \sum_{q'} e_{q'} (\bar{q}_{\alpha}' q_{\beta}')_{V+A}$$
$$Q_{9} = \frac{3}{2} (\bar{q}_{\alpha} b_{\alpha})_{V-A} \sum_{q'} e_{q'} (\bar{q}_{\beta}' q_{\beta}')_{V-A} \quad Q_{10} = \frac{3}{2} (\bar{q}_{\beta} b_{\alpha})_{V-A} \sum_{q'} e_{q'} (\bar{q}_{\alpha}' q_{\beta}')_{V-A}$$

Dipole operators:

$$Q_{7\gamma} = -\frac{e}{8\pi^2} m_b \bar{q}_\alpha \sigma^{\mu\nu} (1+\gamma_5) b_\alpha F_{\mu\nu} \quad Q_{8G} = -\frac{g}{8\pi^2} m_b \bar{q}_\alpha \sigma^{\mu\nu} t^a_{\alpha\beta} (1+\gamma_5) b_\beta G^a_{\mu\nu}$$

Polarization in $B \rightarrow VV$

Polarization:

$$V(\epsilon_0^*) \sim v_{\uparrow} \bar{u}_{\downarrow} + v_{\downarrow} \bar{u}_{\uparrow}, \quad V(\epsilon_+^*) \sim v_{\uparrow} \bar{u}_{\uparrow}, \quad V(\epsilon_-^*) \sim v_{\downarrow} \bar{u}_{\downarrow}$$

approximately,

 $u_R(p) \sim u_{\uparrow}(p), \quad u_L(p) \sim u_{\downarrow}(p), \quad v_L(p) \sim v_{\uparrow}(p), \quad v_R(p) \sim v_{\downarrow}(p)$ each helicity flip costs the suppression m/2E.

$$\begin{split} \overline{q_4} & \stackrel{b}{\longrightarrow} \stackrel{q_1}{\longrightarrow} \overline{q_2} \\ \Rightarrow |\overline{A}_0| : |\overline{A}_-| : |\overline{A}_+| \sim 1 : \frac{\Lambda}{m_B} : \frac{\Lambda^2}{m_B^2} \\ f_L &= 1 - \mathcal{O}(m_V^2/m_B^2), \qquad f_\perp \simeq f_{\parallel} \simeq \mathcal{O}(m_V^2/m_B^2) \end{split}$$

Tree-dominated processes

- $B \rightarrow \rho \rho, \omega \rho;$
- $1 f_L = \mathcal{O}(\Lambda^2/m_b^2)$ about few percent;

Decay Modes	P.F.	Belle	BaBar	HFAG
$B^+ \to \rho^0 \rho^+$	f_L	$0.95 \pm 0.11 \pm 0.02$	$0.905 \pm 0.042^{+0.023}_{-0.027}$	$0.912^{+0.044}_{-0.045}$
$B^0 o ho^0 ho^0$	f_L	$0.70 \pm 0.14 \pm 0.05$		0.70 ± 0.15
$B^0 o ho^+ ho^-$	f_L	$0.941^{+0.034}_{-0.040}\pm0.030$	$0.992 \pm 0.024^{+0.026}_{-0.013}$	$0.978^{+0.025}_{-0.022}$
$B^0 ightarrow K^{*0} ar{K}^{*0}$	f_L		$0.80^{+0.10}_{-0.12}\pm0.06$	$0.80^{+0.12}_{-0.13}$
$B^+ \to \omega \rho^+$	f_L		$0.82 \pm 0.11 \pm 0.02$	0.82 ± 0.11

• Obtain sin 2α from the time-dependent measurements of $B \rightarrow \rho \rho$;

Penguin-dominated processes

• Case 1: $B \to \phi K^*$

 $1 - f_L = \mathcal{O}(1)$ about a half \Rightarrow (polarization puzzles);

Decay Modes	P.F.	Belle	BaBar	HFAG
$B^+ \to \phi K^{*+}$	f_L	$0.52 \pm 0.08 \pm 0.03$	$0.46 \pm 0.12 \pm 0.03$	0.50 ± 0.07
	f_\perp	$0.19 \pm 0.08 \pm 0.02$		0.19 ± 0.08
	ϕ_{\parallel}	$2.10 \pm 0.28 \pm 0.04$		2.10 ± 0.31
	ϕ_\perp	$2.31 \pm 0.30 \pm 0.07$		2.31 ± 0.31
$B^0 o \phi K^{*0}$	f_L	$0.45 \pm 0.05 \pm 0.02$	$0.506 \pm 0.040 \pm 0.015$	0.491 ± 0.032
	f_\perp	$0.31^{+0.06}_{-0.05}\pm0.02$	$0.227 \pm 0.038 \pm 0.013$	0.252 ± 0.031
	ϕ_{\parallel}	$2.40^{+0.28}_{-0.24}\pm0.07$	$2.31 \pm 0.14 \pm 0.08$	$2.37^{+0.14}_{-0.13}$
	ϕ_{\perp}	$2.51 \pm 0.25 \pm 0.06$	$2.24 \pm 0.15 \pm 0.09$	2.36 ± 0.14

Penguin-dominated processes

• Case 2: $B \to \rho K^*$ * $1 - f_L = \mathcal{O}(\Lambda^2/m_b^2)$ for $B^+ \to \rho^0 K^{*+}$ * $1 - f_L = \mathcal{O}(1)$ for $B^+ \to \rho^+ K^{*0}$ and $B^0 \to \rho^0 K^{*0}$

* Even more puzzling than $B \to \phi K^*$!

Decay Modes	P.F.	Belle	BaBar	HFAG
$B^+ \to \rho^0 K^{*+}$ $B^+ \to \rho^+ K^{*0}$ $B^0 \to K^{*0} \rho^0$	$egin{array}{c} f_L \ f_L \ f_L \ f_L \end{array}$	$0.43 \pm 0.11 \substack{+0.05 \\ -0.02}$	$\begin{array}{c} 0.96^{+0.04}_{-0.15}\pm0.04\\ 0.52\pm0.10\pm0.04\\ 0.57\pm0.09\pm0.08\end{array}$	$0.96^{+0.06}_{-0.16}$ 0.48 ± 0.08 0.57 ± 0.12

Polarization puzzles

• $B \rightarrow \phi K^*$: enhanced penguin amplitude with negative-helicity

* new physics effects (scalar and tensor current-current coupling)

Kagan, 2004; Das and Yang, 2004

- * large charming penguin
- * final state interactions
- * smaller A_0 , larger A_1 and V
- * large annihilation effects

C.W.Bauer et al, 2003 H.Y.Cheng, 2004 H.N.Li et al, 2004

Kagan, 2004; Beneke, Rohrer and Yang, 2006

- $B \rightarrow \rho K^*$:
 - * Expected to follow the same pattern of $B \to \phi K^*$;
 - * $1 f_L = \mathcal{O}(\Lambda^2 / m_b^2)$ for $B^+ \to \rho^0 K^{*+}$
 - * $1 f_L = \mathcal{O}(1)$ for $B^+ \to \rho^+ K^{*0}$ and $B^0 \to \rho^0 K^{*0}$
 - * Large electroweak penguin in negative-helicity amplitude or new physics?

QCD factorization formula for $B \rightarrow VV$

Kagan, 2004; M.Beneke, J.Rohrer and DY, 2005

$$\langle V_{1,h}V_{2,h}|Q_i|\bar{B}\rangle = F^{B\to V_1,h}T_i^{I,h}*f_{V_2}^h\Phi_{V_2}^h + (V_1\leftrightarrow V_2) + T_i^{II,h}*f_B\Phi_B*f_{V_1}\Phi_{V_1}*f_{V_2}^h\Phi_{V_2}^h + \mathcal{O}(1/m_b).$$

where $h = 0, \mp$, and in terms of α -convention in [Beneke& Neubert, 2003]

$$\begin{aligned} \mathcal{A}_{h}(\bar{B} \to V_{1}V_{2}) &\sim A^{h} \sum_{i} \alpha_{i}^{h}(V_{1}V_{2}) \\ \begin{cases} A^{0} &\sim A_{0}^{B \to V_{1}} \sim \left(\frac{\Lambda}{m_{b}}\right)^{3/2} \\ A^{-} &\sim \frac{m_{2}}{m_{B}} \left((1 + \frac{m_{1}}{m_{B}})A_{1}^{B \to V_{1}} + (1 - \frac{m_{1}}{m_{B}})V^{B \to V_{1}}\right) \sim \left(\frac{\Lambda}{m_{b}}\right)^{5/2} \\ A^{-} &\sim \frac{m_{2}}{m_{B}} \left((1 + \frac{m_{1}}{m_{B}})A_{1}^{B \to V_{1}} - (1 - \frac{m_{1}}{m_{B}})V^{B \to V_{1}}\right) \sim \left(\frac{\Lambda}{m_{b}}\right)^{7/2} \end{aligned}$$

• Positive helicity amplitude is highly suppressed and cannot be calculated in same way.

$$\Rightarrow f_{\parallel} = f_{\perp} , \phi_{\parallel} = \phi_{\perp}.$$

$$X_A \sim \ln \frac{m_B}{\Lambda_A} (1 + \rho_A e^{i\phi_A}), X_A^2, X_L \sim \frac{m_B}{\Lambda_L} (1 + \rho_L e^{i\phi_L});$$

$$\begin{split} P^{h} &= A^{h}_{V_{1}V_{2}} \left[\alpha^{h}_{4} + \beta^{h}_{3} \right], \\ & \left\{ \begin{array}{l} \alpha^{c}_{4}(\pi\bar{K}) + \beta^{c}_{3}(\pi\bar{K}) = -0.09 - \{0.02 \left[-0.01, 0.05 \right] \}, \\ \alpha^{c0}_{4}(\rho\bar{K}^{*}) + \beta^{c0}_{3}(\rho\bar{K}^{*}) = -0.03 - \{0.00 \left[-0.00, 0.00 \right] \}, \\ \alpha^{c-}_{4}(\rho\bar{K}^{*}) + \beta^{c-}_{3}(\rho\bar{K}^{*}) = -0.05 - \{0.03 \left[-0.04, 0.10 \right] \}. \end{array} \right. \\ & \frac{P^{-}}{P^{0}} \simeq \frac{A^{-}_{\rho K^{*}} \alpha^{c-}_{4} + \beta^{c-}_{3}}{A^{0}_{\rho K^{*}} \alpha^{c,0}_{4}} \simeq \frac{0.05 + \left[-0.04, 0.10 \right]}{0.12}, \quad \text{with } \frac{A^{-}_{\rho K^{*}}}{A^{0}_{\rho K^{*}}} \simeq \frac{1}{4}. \end{split}$$
 Negative-helicity penguin amplitude can be (but need not) be enhanced by the penguin annihilation!

Enhanced EW penguin in $B \rightarrow VV$

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p^{(D)} \sum_{a=\mp} C^a_{7\gamma} Q^a_{7\gamma} + \dots,$$

$$Q^{\mp}_{7\gamma} = -\frac{e\bar{m}_b}{8\pi^2} \bar{D}\sigma_{\mu\nu} (1\pm\gamma_5) F^{\mu\nu} b \,\lambda_p^{(D)} = V^*_{pD} V_{pb}.$$

introduces the additional EW penguin amplitude for the decays to the neutral vector meson (ρ^0, ω, ϕ),

The resulted amplitudes for different helicities

 $|\Delta P_0^{EW}| : |\Delta P_-^{EW}| \sim 1 : m_b / \Lambda$

(Here we neglect the contribution from $Q_{7\gamma}^+$.)

The representative coefficient in QCDF

$$\Delta \alpha_{3,\text{EW}}^{p\mp}(V_1 V_2) = \mp \frac{2\alpha_{\text{em}}}{3\pi} C_{7\gamma,\text{eff}}^{\mp} R_{\mp} \frac{m_B \bar{m}_b}{m_{V_2}^2}$$

with $R_{-} = 1$ in the heavy quark limit. Numerically, we have

$$\Delta \alpha_{3,\mathsf{EW}}^{p-}(K^*\rho) \approx 0.02\,,$$

meanwhile the uncorrected EW penguin and leading QCD penguin

$$\alpha_{3,\text{EW}}^{p-}(K^*\rho) = C_7 + C_9 + \frac{C_8 + C_{10}}{N_c} + \dots \approx -0.01,$$

$$\hat{\alpha}_4^{c-}(\rho K^*) = C_4 + \frac{C_3}{N_c} + \dots \approx -0.055.$$

Effectively,

$$|\Delta \alpha_{3,\text{EW}}^{c-}(K^*V_2)| = \frac{2\alpha_{\text{em}}}{3\pi} R_{-} \frac{m_B^2}{m_{V_2}^2} \left(\frac{\Gamma(B \to K^*\gamma)}{\frac{G_F^2 |V_{ts}^* V_{tb}|^2}{8\pi^3} \frac{\alpha_{\text{em}}}{4\pi} m_B^5 T_1^{K^*}(0)^2} \right)^{1/2}$$

with $T_1^{K^*}(0) \approx 0.28$, we get

$$|\Delta \alpha_{3,\text{EW}}^{c-}(K^* \rho)| = 0.023$$

Tree-dominated decays

BrAv
$$(B \to \rho^- \rho^0) = \left| \frac{V_{ub}}{3.53 \cdot 10^{-3}} \right|^2 \times \left| \frac{A_0^{B \to \rho}(0)}{0.30} \right|^2 \times \left(18.8^{+0.4+3.2}_{-0.4-3.9} \right) \cdot 10^{-6}$$

	BrAv	/ 10 ⁻⁶	$A_{\rm CP}$ / percent		
	Theory	Experiment	Theory	Experiment	
$\begin{array}{c} B^- \to \rho^- \rho^0 \\ \bar{B}^0 \to \rho^+ \rho^- \\ \bar{B}^0 \to \rho^0 \rho^0 \end{array}$	$18.8^{+0.4+3.2}_{-0.4-3.9}\\23.6^{+1.7+3.9}_{-1.9-3.6}\\0.9^{+0.6+1.9}_{-0.3-0.9}$	$\begin{array}{c} 18.2 \pm 3.0 \\ 23.1^{+3.2}_{-3.3} \\ 1.07 \pm 0.38 \end{array}$	$0^{+0+0}_{-0-0} \\ -1^{+0+4}_{-0-8} \\ +28^{+5+53}_{-7-29}$	$-8 \pm 13 +11 \pm 13$ n/a	
$\begin{array}{c} B^- \to \omega \rho^- \\ \bar{B}^0 \to \omega \rho^0 \\ \bar{B}^0 \to \omega \omega \end{array}$	$12.8^{+1.1+2.0}_{-1.3-2.4}\\0.2^{+0.1+0.3}_{-0.1-0.1}\\0.9^{+0.5+1.5}_{-0.3-0.9}$	$10.6^{+2.6}_{-2.3} < 1.5 < 4.0$	-8^{+3+5}_{-2-8} no prediction -29^{+9+25}_{-6-44}	$+4 \pm 18$ n/a n/a	

	f_L / p	$A_{\rm CP}^0$ / percent	
	Theory	Experiment	Theory
$\begin{array}{c} B^- \to \rho^- \rho^0 \\ \bar{B}^0 \to \rho^+ \rho^- \\ \bar{B}^0 \to \rho^0 \rho^0 \end{array}$	$\begin{array}{c} 95.9^{+0.2+3.4}_{-0.3-5.9}\\ 91.3^{+0.4+5.6}_{-0.3-6.4}\\ 90^{+3+8}_{-4-56}\end{array}$	$91.2^{+4.4}_{-4.5}$ 96.8 ± 2.3 87 ± 14	$\begin{array}{r} -0^{+0+0}_{-0-0} \\ -2^{+0+4}_{-0-2} \\ -8^{+2+59}_{-1-28} \end{array}$
$\begin{array}{l} B^- \to \omega \rho^- \\ \bar{B}^0 \to \omega \rho^0 \\ \bar{B}^0 \to \omega \omega \end{array}$	$93.7^{+1.1}_{-1.0}{}^{+4.7}_{-8.1}$ $49^{+11}_{-11}{}^{+47}_{-23}$ $93^{+2}_{-4}{}^{+5}_{-22}$	$\begin{array}{c} 82 \pm 11 \\ n/a \\ n/a \end{array}$	$\begin{array}{r} -2^{+1+7}_{-0-6} \\ +35^{+25+47}_{-15-84} \\ +6^{+1+14}_{-1-24} \end{array}$

Strategies in penguin-dominated decays

- QCDF loses predictive power in penguin annihilations with transverse polarization;
- Use information from experiments as much as we can;
 - Strategy 1: fit only the penguin annihilation from $B \rightarrow \phi K^*$ measurements;
 - Strategy 2: fit the whole penguin amplitude from $B \to \phi K^*$;
 - Trust the predictions for other topological amplitudes using QCDF;
 - Constrained X_A :

 $\varrho_A = 0.5 \pm 0.2_{\text{exp.}} \qquad \varphi_A = (-43 \pm 19_{\text{exp.}})^\circ,$

- $\hat{\alpha}_4^{c-} = \alpha_4^{c-} + \beta_3$ from data:

$$\begin{aligned} \bar{\mathcal{A}}_{-} &= A_{K^*\phi} \lambda_c^{(s)} P_{-}^{K^*\phi}, \\ P_{-}^{K^*\phi} &= (-0.084 \pm 0.008(\exp)^{+0.008}_{-0.009}(\text{th})) \\ &+ i (0.021 \pm 0.015(\exp)^{+0.003}_{-0.002}(\text{th})), \end{aligned}$$

with α_3^{c-} from QCDF

$$\hat{\alpha}_4^{c-} = (-0.08 \pm 0.02) + i (0.03 \pm 0.02).$$

Observable		Theory			Experiment
		default	constrained X_A	$\hat{\alpha}_4^{c-}$ from data	
$\mathrm{BrAv}/10^{-6}$	$\begin{array}{c} \phi K^{*-} \\ \phi \bar{K}^{*0} \end{array}$	$\begin{array}{c} 10.1\substack{+0.5+12.2\\-0.5-7.1\\9.3\substack{+0.5+11.4\\-0.5-6.5}\end{array}$	$\begin{array}{c} 10.1\substack{+0.5+7.2\\-0.5-4.8\\9.3\substack{+0.5+6.7\\-0.5-4.5}\end{array}$	$\begin{array}{c} 10.4\substack{+0.5+5.2\\-0.5-3.9\\9.6\substack{+0.5+4.7\\-0.5-3.6}\end{array}$	9.7 ± 1.5 9.50 ± 0.90
$A_{ m CP}/\%$	$\begin{array}{l} \phi K^{*-} \\ \phi \bar{K}^{*0} \end{array}$	$\begin{array}{c} 0^{+0+2}_{-0-1} \\ 1^{+0+1}_{-0-0} \end{array}$	$0^{+0+0}_{-0-0} \\ 1^{+0+0}_{-0-0}$	$ \begin{smallmatrix} 0^{+0+3} \\ -0-2 \\ 1^{+0+2} \\ -0-1 \end{smallmatrix} $	$\begin{array}{c} 5\pm11\\ 0.0\pm7.0 \end{array}$
$f_L/\%$	$\begin{array}{l} \phi K^{*-} \\ \phi \bar{K}^{*0} \end{array}$	$\begin{array}{r} 45^{+0+58}_{-0-36} \\ 44^{+0+59}_{-0-36} \end{array}$	$\begin{array}{r} 45^{+0+35}_{-0-31} \\ 44^{+0+35}_{-0-31} \end{array}$	$\begin{array}{c} 44^{+0+23}_{-0-23} \\ 43^{+0+23}_{-0-23} \end{array}$	50.0 ± 7.0 49.0 ± 4.0
$A_{\mathrm{CP}}^0/\%$	$\begin{array}{l} \phi K^{*-} \\ \phi \bar{K}^{*0} \end{array}$	$\begin{array}{c} -1^{+0+2}_{-0-1} \\ 0^{+0+1}_{-0-1} \end{array}$	$\begin{array}{c} -1^{+0+1}_{-0-1} \\ 0^{+0+1}_{-0-0} \end{array}$	$\begin{array}{c} -1^{+0+2}_{-0-2} \\ 0^{+0+1}_{-0-2} \end{array}$	$\begin{array}{c} \mathrm{n/a} \\ 1.0\pm8.0 \end{array}$
$(f_{\parallel}-f_{\perp})/\%$	$\begin{array}{l} \phi K^{*-} \\ \phi \bar{K}^{*0} \end{array}$	$\begin{array}{c} 0^{+0+2}_{-0-2} \\ 0^{+0+2}_{-0-2} \end{array}$	$\begin{array}{c} 0^{+0+2}_{-0-2} \\ 0^{+0+2}_{-0-2} \end{array}$	$0^{+0+2}_{-0-2} \\ 0^{+0+2}_{-0-2}$	$12^{+17}_{-17} \\ -3.0^{+8.9}_{-7.2}$
$(A_{\rm CP}^{\parallel} - A_{\rm CP}^{\perp})/\%$	$\begin{array}{c} \phi K^{*-} \\ \phi \bar{K}^{*0} \end{array}$	$\begin{array}{c} 0^{+0+0}_{-0-0} \\ 0^{+0+0}_{-0-0} \end{array}$	$0^{+0+0}_{-0-0}\\0^{+0+0}_{-0-0}$	$0^{+0+0}_{-0-0}\\0^{+0+0}_{-0-0}$	${ m n/a}\ { m 32}^{+36}_{-36}$
$\phi_{\parallel}/^{\circ}$	$\phi K^{*-} \ \phi \bar{K}^{*0}$	$-41^{+0+84}_{-0-53}\\-42^{+0+87}_{-0-54}$	$-41^{+0+35}_{-0-30}\\-42^{+0+35}_{-0-30}$	$-40^{+0+21}_{-0-21} \\ -42^{+0+21}_{-0-21}$	$-60 \pm 16 \\ -42^{+10}_{-9}$
$\Delta \phi_{\parallel}/^{\circ}$	$\begin{array}{l} \phi K^{*-} \\ \phi \bar{K}^{*0} \end{array}$	$\begin{array}{c} 0^{+0+0}_{-0-1} \\ 0^{+0+0}_{-0-0} \end{array}$	$\begin{array}{c} 0^{+0+0}_{-0-0} \\ 0^{+0+0}_{-0-0} \end{array}$	$\begin{array}{c} 0^{+0+0}_{-0-0} \\ 0^{+0+0}_{-0-1} \end{array}$	$\frac{n/a}{2\pm 10}$
$(\phi_{\parallel} - \phi_{\perp})/^{\circ}$	$\phi K^{*-} \ \phi \bar{K}^{*0}$	$\begin{array}{c} 0^{+0+1}_{-0-1} \\ 0^{+0+1}_{-0-1} \end{array}$	$0^{+0+1}_{-0-1} \\ 0^{+0+1}_{-0-1}$	$0^{+0+1}_{-0-1} \\ 0^{+0+1}_{-0-1}$	$-12_{-24}^{+24} \\ -6_{-13}^{+14}$
$(\Delta \phi_{\parallel} - \Delta \phi_{\perp})/^{\circ}$	$\begin{array}{c} \phi K^{*-} \\ \phi \bar{K}^{*0} \end{array}$	$\begin{array}{c} 0^{+0+0}_{-0-0} \\ 0^{+0+0}_{-0-0} \end{array}$	$0^{+0+0}_{-0-0}\\0^{+0+0}_{-0-0}$	$0^{+0+0}_{-0-0}\\0^{+0+0}_{-0-0}$	${ m n/a}\ 0^{+15}_{-15}$

$\mathrm{BrAv}/10^{-6}$	Theory		Experiment
	default	$\hat{\alpha}_4^{c-}$ from data	
$B^- \to K^{*-}\phi$	$10.1^{+0.5+12.2}_{-0.5-7.1}$	$10.4^{+0.5+5.2}_{-0.5-3.9}$	9.7 ± 1.5
$\bar{B}^0 \to \bar{K}^{*0} \phi$	$9.3^{+0.5+11.4}_{-0.5-6.5}$	$9.6^{+0.5+4.7}_{-0.5-3.6}$	9.50 ± 0.90
$B^- \to K^{*-} \omega$	$2.4^{+0.8+2.9}_{-0.7-1.3}$	$2.3^{+0.8+1.4}_{-0.7-0.7}$	< 3.4
$ar{B}^0 o ar{K}^{*0} \omega$	$2.0^{+0.1}_{-0.1}$	$1.9_{-0.1-0.7}^{+0.1+1.5}$	< 4.2
$B^- \to \bar{K}^{*0} \rho^-$	$5.9^{+0.3+6.9}_{-0.3-3.7}$	$5.8_{-0.3-1.9}^{+0.3+3.1}$	9.2 ± 1.5
$B^- \to K^{*-} \rho^0$	$4.5^{+1.5+3.0}_{-1.3-1.4}$	$4.5^{+1.5+1.8}_{-1.3-1.0}$	< 6.1
$\bar{B}^0 \to K^{*-} \rho^+$	$5.5^{+1.7+5.7}_{-1.5-2.9}$	$5.4^{+1.7+2.6}_{-1.5-1.5}$	n/a
$\bar{B}^0 \to \bar{K}^{*0} \rho^0$	$2.4_{-0.1-2.0}^{+0.2+\overline{3.5}}$	$2.3_{-0.1-0.8}^{+0.2+1.1}$	5.6 ± 1.6
$\bar{B}_s \to \phi \phi$	$21.8^{+1.1}_{-1.1}{}^{+30.4}_{-1.0}$	$19.5^{+1.0}_{-1.0}{}^{+13.1}_{-8.0}$	$14.0_{-7.0}^{+8.0}$

f_L / percent	Theory		Experiment
	default	$\hat{\alpha}_4^{c-}$ from data	
$\begin{array}{c} B^- \to K^{*-}\phi \\ \bar{B}^0 \to \bar{K}^{*0}\phi \\ B^- \to K^{*-}\omega \\ \bar{B}^0 \to \bar{K}^{*0}\omega \\ B^- \to \bar{K}^{*0}\rho^- \\ B^- \to K^{*-}\rho^0 \end{array}$	$\begin{array}{r} 45^{+0+58}_{-0-36} \\ 44^{+0+59}_{-0-36} \\ 53^{+8}_{-11-39} \\ 40^{+4+77}_{-3-43} \\ 56^{+0+48}_{-0-30} \\ 84^{+2+16}_{-3-25} \end{array}$	$\begin{array}{r} 44^{+0+23}_{-0-23} \\ 43^{+0+23}_{-0-23} \\ 56^{+8}_{-11-19} \\ 43^{+4+38}_{-3-32} \\ 57^{+0+21}_{-0-18} \\ 85^{+2+9}_{-3-11} \end{array}$	50.0 ± 7.0 49.0 ± 4.0 n/a 1/a 48.0 ± 8.0 96^{+6}_{-16}
$\begin{array}{c} B^0 \to K^{*-} \rho^+ \\ \bar{B}^0 \to \bar{K}^{*0} \rho^0 \end{array}$	$ \begin{array}{c} 61^{+5+38}_{-7-28} \\ 22^{+3+53}_{-3-14} \end{array} $	$\begin{array}{c} 62^{+5+17}_{-6-15} \\ 22^{+3+21}_{-3-13} \end{array}$	n/a 57 ± 12

More on $B \to \rho K^*$ system

$$\begin{array}{rcl} A_{h}(\rho^{-}\bar{K}^{*0}) &=& P_{h} \\ \sqrt{2}A_{h}(\rho^{0}K^{*-}) &=& [P_{h}+P_{h}^{EW}] + e^{-i\gamma}[T_{h}+C_{h}] \\ A_{h}(\rho^{+}K^{*-}) &=& P_{h}+e^{-i\gamma}T_{h} \\ -\sqrt{2}A_{h}(\rho^{0}\bar{K}^{*0}) &=& [P_{h}-P_{h}^{EW}] + e^{-i\gamma}[-C_{h}] \\ \text{and define } x_{h} &=& X_{h}/P_{h} \ (h=0,-1). \\ \bar{\Gamma}_{-}(\rho^{-}\bar{K}^{*0}) &:& \sqrt{2}\bar{\Gamma}_{-}(\rho^{0}K^{*-}) \\ &\sim& 1 : & |1+p_{-}^{EW}|^{2} : & |1-p_{-}^{EW}|^{2} \\ \hline & \frac{B^{-}\rightarrow K^{*-}\rho^{0}}{\text{incl. excl. exp.}} & \frac{\bar{B}^{0}\rightarrow\bar{K}^{*0}\rho^{0}}{\text{incl. excl. exp.}} \\ \hline & \frac{B^{RAv}/10^{-6} & 4.5 & 5.4 < 6.1 & 2.4 & 1.4 & 5.6 \pm 1.6 \\ f_{L} \ / \% & 84 & 70 & 96_{-16}^{+6} & 22 & 37 & 57 \pm 12 \\ A_{CP} \ / \% & 16 & 14 & 20_{-29}^{+32} & -15 & -24 & 9 \pm 19 \end{array}$$

• QCDF predicts $f_L(\rho^0 K^{*-}) > f_L(\rho^- \overline{K}^{*0}) > f_L(\rho^0 \overline{K}^{*0})$. It is against current measurements.

Conclusions and perspective

- QCD factorization loses predictive power for penguin-dominated $B \rightarrow VV$ decays;
- Penguin weak annihilation could be an answer to polarization puzzle of $B \to \phi K^*$;
- Enhanced electroweak penguin with negative-helicity could explain the polarization puzzles in $B^+ \to \rho^+ K^{*0}$ and $B^+ \to \rho^0 K^{*+}$, but not for polarization of $B^0 \to \rho^0 K^{*0}$;
- Polarization puzzles of $B \rightarrow \rho K^*$ are challenging for new physics model building;
- New measurements on polarizations in B → AV and TV will shed more light on research of chirality structure of interaction, but QCD effects are still crucial;

THANKS!