Neutrino Signals from Solar Neutralino Annihilations in AMSB model

Jia Liu ITP, School of Physics, Peking University based on Jia Liu, Peng-fei Yin, Shou-hua Zhu , arXiv:0803.2164

Nanjing, April 28, 2008

Outline

- Dark Matter
- Neutrino from neutralino annihilation in Sun
- Neutrino propagation
- Muon detection in IceCube
- Summary

Dark Matter

- Non-luminous matter with gravitation effects
- Galactic rotation curves
- Cold dark matter by analyses of structure formation

• WMAP $\Omega_{nbm}h^2 = 0.111 \pm 0.006$

 $\Omega_b h^2 = 0.023 \pm 0.001$

From SUSY07 public lecture

Candidate for Dark Matter

Conditions

- Stable on cosmological time scales
- Very weak electromagnetic radiation
- Right relic density

Candidates

- Weakly interacting massive particles(WIMP)
 - -Neutralino in Supersymmetry
- Primordial black holes, Axions

Experiment for Dark Matter

Direct WIMP search

- Detection of nuclear recoils
- Cryogenics detector, Noble liquid
- No positive identification
- XENON10 $\sigma_{\chi^-p}^{SI} < 4.5 \times 10^{-8} \, pb$

Indirect WIMP search

- WIMP annihilation and decay
- Photon, neutrino, positron, anti-nuclei

IceCube neutrino detector

Surpass the sonic barrier

 Muon surpass the speed of light

 Cerenkov light passing through the IceCube neutrino detector

Courtesy Steve Yunck/NSF

IceCube neutrino detector

Neutrino signal from Solar center

- Dark matter scatters off nucleus in Sun
- Trapped by gravitation of Sun
- Capture rate equals annihilation rate

 $C_{\odot} = 3.4 \times 10^{20} \, s^{-1} \, \frac{\rho_{local}}{0.3 GeV \, / \, cm^3} \left(\frac{270 \, km \, / \, s}{v_{local}}\right) \left(\frac{\sigma_{SD}^{H} + \sigma_{SI}^{H}}{10^{-6} \, pb}\right) \left(\frac{100 GeV}{m_{\tilde{\chi}_{0}^{1}}}\right)^{2}$

- Elastic scattering of nucleus and neutralino
- Spin-dependent interaction
- Axial-vector interaction
- Exchanging Z, squark
- In our paper, SD is dominant
- Experiments in 07

$$\sigma_{SD} < 0.1 pb \sim 1 pb$$

- Spin-independent interaction
- Scalar interaction
- Exchanging H,h,squark
- Dominant in heavy nuclei
- XENON10 for a 100GeV WIMP

 $\sigma_{\gamma-p}^{SI} < 4.5 \times 10^{-8} \, pb$

Dark matter annihilation in Anomaly Mediated Supersymmetry Breaking Model

- In AMSB SUSY breaking via superconformal anomaly
- Free parameter of Minimal AMSB

 $m_{3/2}, m_0, \tan\beta, sign(\mu)$

 $\widetilde{\chi}_0^1 = N_{11}\widetilde{B} + N_{12}\widetilde{W} + N_{13}\widetilde{H}_d + N_{14}\widetilde{H}_u$

- Wino-like neutralino
- Mainly annihilate to WW pair
- Other channel-ZZ, Zh, top pair

Helicity effects and secondary neutrinos

- Transverse polarized W boson
- Leptonic decay and hadronization

Other annihilation channel

Z boson in Zh channel is longitudinal polarizedZZ is similar to WW

Propagation of neutrinos to Earth

Density evolution equation of propagation

$$\frac{d\rho}{dr} = -i[H,\rho] + \frac{d\rho}{dr}\Big|_{NC} + \frac{d\rho}{dr}\Big|_{CC} + \frac{d\rho}{dr}\Big|_{0}$$

- Vacuum oscillation
- Neutrino scattering
- Neutrino absorption and tau-neutrino reinjection
- Monte carlo simulation-WimpSim

Main conclusions of our paper

• Possible to observe muons at IceCube if $\sigma_{SD} > 10^{-5} pb$

Angular distribution of muons

- Angle of muon velocity
- In range $100 GeV < m_{\sim 1} < 1 TeV$
- Most of Muons are within 2 degree
- Important information to reduce spherical homogeneous atmosphere neutrino background

Atmosphere neutrino background

- Cosmic ray interacts with atmosphere around the Earth, produces high energy neutrinos which can result in muons in detector
- Such neutrino have no special direction, thus can be reduced by angle cut of IceCube
- We use the estimated atmospheric neutrino flux from <u>astro-ph/0611418</u> which considers muon data from Kamioka, Sudbury and Gran Sasso

Muon spectrum and backgrounds

Benchmark Points

Point	$m_{\chi}(\text{GeV})$	$m_0(\text{TeV})$	$m_{3/2}$ (TeV	$V) \mu(Ge)$	V)	R_h	σ_{SD}	C	$J_{\odot}(yr^{-1})$
А	110	2.9	34	420	0	4.4 %	5.1×1	0-5 8	3.3×10^{29}
В	285	6.1	88	498	8	7.1 %	4.2×10^{-10}) ⁻⁵ 1	$.0 \times 10^{29}$
С	510	9.5	162	62	0	19.2 %	5.0×10	$)^{-5}$ 4	4.1×10^{28}
D	1000	15.3	314	112	20	14.5 %	1.1×10	$)^{-5}$ 2	2.2×10^{27}
Poin	t <mark>oww</mark> otot	$\frac{\sigma_{ZZ}}{\sigma_{tot}}$	$rac{\sigma_{t\overline{t}}}{\sigma_{tot}}$	$rac{\sigma_{Zh}}{\sigma_{tot}}$	θe	cut (°)	<mark>Sig</mark>	<mark>BG</mark>	σ _{stat}
Α	100.0	% 0.0%	0.0%	0.0%		2.0	23.3	24.3	1 4.7
В	99.1%	% 0.0%	0.9%	0.0%		2.0	102.1	24.3	1 20.8
С	95.6%	% 0.2%	4.2%	0.0%		1.5	70.3	13.0	5 19.1
D	96.9%	% 0.1%	3.0%	0.0%		1.0	3.0	6.0	1.2

Summary

- Neutralino annihilation in Sun produces high energy neutrinos
- Neutrinos propagate to IceCube from Sun
- The condition for muon detection in AMSB $\sigma_{SD} > 10^{-5} \, pb$
- The angular distribution of muons $\theta < 2^{\circ}$
- Angular distribution is crucial to reduce atmosphere neutrino backgrounds

Thank you!

www.CERRADreams.de

