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Abstract

Perturbation theory is a powerful tool in manipulating dynamical system. However,

it is legal only for infinitesimal perturbations. We propose to dispose this problem by

means of perturbation group, and find that the coupling constant approaches to zero

in the limit of high order perturbations as Dyson once expected.
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1 Motivations

Perturbation theory + renormalization schemes:⇒ QM, QFT. QED, prominent success in
predictions for

1. Lamb shift: ∆ν ≡ (E2s − E2p)/2π~,

∆νQED = 1420.45199(14)MHz,
∆νexp = 1420.4057517667(9)MHz,

2. Anormalous magnetic moment g of electron in units of Bohr magneton µB = e~/2mc. a ≡ (g−2)/2,

aQED = 0.001159652174.19(from Kinoshita)
aexp = 0.0011591628(77)
aPG
QED = 0.00116052601

Dyson: All the asymptotic series used in quantum electrodynamics after renormalization in mass
and charge are divergent.

Jaffe: Cut from the origin to −∞ along the real axis in the complex plane of g.

Bender and Wu : 1D- φ4-model ⇒ 1. Analytic behaviors for the eigenfunction φ(x, λ), eigenvalue
E(λ) and resolvent (z − H)−1. 2. The asymptotic series for E0 is divergent. 3. An infinite sequence of

poles for the resolvent when the phase of g → ±3

2
π.

Lipatov: the renormalizable polynomial interaction scalar model⇒1. The dominated contributions
come from those diagrams with certain numbers of vertices connected by equal numbers of internal lines.
2. Watson-Sommerfeld transformation7→ the existence of the ultraviolet fixed point of the theory.

Brezin et. al.: Anharmonic oscillators⇒Generalized the result to the case of internal O(n) symmetry.

Kazakov and Popov:Asymptotic of the Gell-Mann-Low β-function cannot be recovered by its first
coefficients of the perturbation series and their asymptotic values without invoking additional information.

Mathematical works:

Kato: Theorem for the analytic behavior of of the eigenvalues of operators in analytic family.

Reed and Simon: Systematic and extensive review for the theory of perturbation for bounded as
well as unbounded operators.

2 Perturbation expansions in QED

Keiichi Ito:

Therefore the present study will cast a light on new and constructive study of 4D electrodynam-
ics which is believed trivial by most of modern physicists. ( Trivial means that the full theory of

QED does not exist and the perturbation expansion has nothing to do with the physical

phenomena in the world of electrons and photons.)

The application of perturbation expansions in QED achieved great success in QED. This was first
explored by Karplus and Kroll where the covariant S matrix formalism of Dyson was applied to the
calculation of the fourth-order radiative correction to the magnetic moment of the electron. Then Kinosita
went further to 10th order. Among them the key step was that taken by Karplus and Kroll in Harvard
in 1954. Ins’nt there any problem? May be.
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1. The first Born approximation was made by Karplus and Kroll in their manipulation. But according
to Dyson one may go further to higher Born approximation

U =

∞
∑

n,m=0

(−i

~c

)n+m 1

n!m!

∞
∫

−∞

d4x0d
4x1...d

4xn+mP [He(x0), H
e(x0), ..., H

I(x1)...H
I(xn)], (1)

2. It is likely that there might be something worthy further inspection.

Our propositions: 1. Perturbation group, 2. Coupling constant g(n) → 0.

3 Perturbation group

Asymptotic series for f(λ):

lim
λ↓0

(

f(λ) −
N

∑

n=0

anλn
)/

λN = 0 (2)

If the asymptotic series is not convergent, then its typical behavior is that the first few partial sums
are fairly good approximation, but in higher approximations the sums oscillate widely and no longer
approximate the desired limit.

Example 1: f(z) = exp(−z−1) for z > 0.

lim
z↓0

z−n[f(z)−∑

n
0 · zn] →0 , ⇒ f has 0 as its asymptotic series. In fact , the zero series is asymptotic

uniformly in any sector | arg z| ≤ θ with θ < π/2.

Two different functions may have the same asymptotic series. Saying that f has a certain

asymptotic series gives us no information about the values of f(z) for some fixed nonzero

value of z.

Example 2: Rayleigh-Schrödinger Series for Ground State Energy:

The ground state energy of the Hamiltonian, p2 + x2 + βx4(β > 0), is the asymptotic to E0(β) as
β ↓ 0. For β = 0.2, variational methods show that E0(β) = 1.118292..... The first 15 partial sums are
given in the following table.

N
N
∑

n=0

an(0.2)n N
N
∑

n=0

an(0.2)n

1 1.150000 9 2.353090
2 1.097500 10 -2.442698
3 1.153750 11 13.253698
4 1.105372 12 -42.333586
5 1.176999 13 168.895730
6 1.049024 14 -796.466406
7 1.413970 15 3005.179546
8 0.686006 50 ∼ 1045

Thus we see the typical behavior of wandering near the right answer for a while (and not even that
near!) and then going wild. And as N gets larger, things get worse.

Our proposition: Separate the perturbation into many steps and limit the perturbation

to be infinitesimal in each step.⇒ Perturbation group
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Let β ∈ Z, H, K ∈ B(Banach space—Linear normed space), then

H = H0 + βK ∈ B.

Let T (β, β0) be a translation in B,

T (β, β0) : Hβ0
= H0 + β0K 7−→ Hβ = H0 + βK. (3)

Let the representation U(β, β0) of the translation T (β, β0) be a transformation on a Hilbert space H
defined by U(β1, β0) ∈ L(H),

U(β1, β0)ϕβ0
= ϕβ1

(4)

where ϕβ0
and ϕβ1

are the eigenvectors of Hβ0
and Hβ1

respectively,

Hβ0
ϕβ0

≡ (H0 + β0K)ϕβ0
= λβ0

ϕβ0
,

Hβ1
ϕβ1

≡ (H0 + β1K)ϕβ0
= (Hβ0

+ (β1 − β0)K)ϕβ1
= λβ1

ϕβ1
,

(5)

and it is assumed that when β varies continuously from β0 to β1, the eigenvector of H(β, β0)) varies
continuously from ϕ(β0) to ϕ(β1). Since

U(β2, β1)U(β1, β0)ϕβ0
= U(β2, β1)ϕβ1

= ϕβ2
, (6)

and
U(β2, β0)ϕβ0

= ϕβ2
, (7)

Thus
U(β2, β1)U(β1, β0) = U(β2, β0). (8)

Besides
U(β, β) = 1, (9)

and
U(β1, β0)

−1 = U(β0, β1). (10)

Therefore the transformations U(β1, β0) form a group.

4 Generator for perturbation group

Let us first setup the perturbation equation for the perturbation group. The derivative of U(β, β0) with
respect to β is given as follows,

∂U(β, β0)

∂β
= lim

∆β→0

U(β + ∆β, β0) − U(β, β0)

∆β

= lim
∆β→0

U(β + ∆β, β) − U(β, β)

∆β
U(β, β0)

=
∂U(β′, β)

∂β′

∣

∣

∣

∣

∣

β′=β

U(β, β0).

(11)

where we denote

G(β) ≡ ∂U(β′, β)

∂β′

∣

∣

∣

∣

∣

β′=β

(12)

as the generator of the perturbation group. thus we have the perturbation equation for the perturbation
group as follows,

∂U(β, β0)

∂β
= G(β)U(β, β0). (13)
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The group is hermitian if and only if G(β) is anti-hermitian,

G†(β) = −G(β). (14)

The infinitesimal transformation can be written as

U(β + ∆β, β) = exp{G(β)∆β}, for ∆β → 0 (15)

Therefore we can proceed with the infinitesimal perturbations step by step, and finally obtain the per-
turbation with finite coupling constant. Let C be a section of line connecting two points β0 and β1 in
the analytic regime of the complex plane of β, while the line segment is divided into n sections by n − 1
points β(sk), sk ∈ R, (k = 1, 2, 3, ...., n− 1) on the line,

β(sk) = β(s0) + k∆β, (k ∈ I) β(sn) = β(sf ). (16)

U(βf , β0) = lim
n→∞

U(β0 + n∆β, β0 + (n − 1)∆β)....U(β0 + k∆β, β0 + (k − 1)β))...U(β0 + ∆β, β0)

= lim
n→∞

P exp{G(β0 + (n − 1)∆β)∆β}... exp{G(β0)∆β}

= P exp{ lim
n→∞

n−1
∑

k=0

G(β + k∆β)∆β)}

= P exp
{

∫ βf

β0

G(β)dβ
}

= 1 +
∞
∑

n=0

1

n!

βf
∫

β0

dβ1

βf
∫

β0

dβ2...
βf
∫

β0

dβnPG(β1)G(β2)...G(βn).

(17)
where P denotes the perturbation ordered product by the perturbation constant β ∈ R,

PG(β(s2))G(β(s1)) =
{ G(β(s2))G(β(s1)), for s2 > s1;

G(β(s1))G(β(s2)), for s1 > s2,
(18)

and use is made of the fact that

P

βf
∫

β0

dβ1

β1
∫

β0

dβ2...

βn−1
∫

β0

dβnG(β1)G(β2)...G(βn) =
1

n!

βf
∫

β0

dβ1

βf
∫

β0

dβ2...

βf
∫

β0

dβnPG(β1)G(β2)...G(βn). (19)

Note that in view of the of the perturbation ordered product, there are no commutators between the
generators in the exponential in contrast to the Campbell-Baker-Hausdorff formula.

The transformation U(βf , β0) in eq.(17) can be manipulated through iteration, i. e., first insert the
zeroth approximation into the right hand side integrals and obtain the first approximation, then iterate.

5 Perturbation group for quantum field theories

The evolution of the state vector ϕI(β; t) in the interaction picture is effected by the evolution operator
U(β, β0; t1, t0),

i
∂U(β0 + ∆β, β0; t, t0)

∂t
= ∆βHI(t)U(β0 + ∆β, β0; t, t0), (20)

where HI(t) ≡
∫

d3xH(t,x) is the Hamiltonian 3-density, and

U(β0 + ∆β, β0; t, t0) = T exp{i
∫

dt∆βHI(t)} (21)
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Thus the generator for the infinitesimal perturbation transformation is

G(β) = i

∫

dtHI(t), (22)

Then the perturbation group equation is

∂U(β1, β0; t, t0)

∂β
=

{

∫

dtHI(t)
}

U(β1, β0; t, t0) (23)

The perturbation transformation U(β, 0; t, t0) is

U(β, 0; t, t0) = PT exp

{

− i
β
∫

0

dβ′
∫ t

t0
dtHI(t

′)

}

= 1 +
∑

n

1

n!

(−i)n

n!
βn

t
∫

t0

dt′1...
t
∫

t0

dt′nTHI(t
′
1)...HI(t

′
n).

(24)

In view of the reducing factor
1

n!
before the n-th order term in the series, it seems that the contributions

of the higher corrections are overestimated in the conventional series.[9]. This reducing factor
1

n!
can also

be absorbed into the coupling constant, thus the coupling constant is defined as a function g(n) of order
of approximation,

g(n) ≡ g

(n!)1/n
. (25)

then the perturbation series recover its ordinary form. Using Stirling’s formula, it is easily seen that

g(n) =
g

(n!)1/n
≈ e

n
g, (26)

for large n, where e is the constant of the natural logarithm. Therefore

lim
n→∞

g(n) = 0, (27)

as Dyson once expected[3].

6 Quantum electrodynamics and quantum chronodynamics

It is well-known that quantum electrodynamics achieved great success in theoretical prediction for anoma-
lous magnetic moment of electron[15]. In quantum electrodynamics, according to Furry’s theorem, the
Feynman diagrams containing an odd number of photon vertices lead to vanishing contribution. Thus it
seems to be more reasonable to choose the coupling constant α ≡ e2 as the parameter in loop expansions.
Then we have the renormalized coupling constant α as

α = Z3αB, (28)

where α is the renormalized coupling constant, while αB is the bare one.

The Landè factor g for anomalous magnetic moment of pure quantum electrodynamics [15, 16] is

g = 2
[

1 + C1

(α

π

)

+ C2
1

2!

(α

π

)2
+ C3

1

3!

(α

π

)3
+ C4

1

4!

(α

π

)4
+ ...

]

, (29)

where the coefficients Ci’s are obtained in renormalization.
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Therefore the g-factor from perturbation group approach is

gPG
QED = 2(1 + 0.001160526044..), (30)

while recent experimental data is [15]

gexp = 2(1 + 0.0011596521884...). (31)

and ordinary perturbation data gives

gOrd
QED = 2(1 + 0.0011596521564...) (32)

Besides, one might still worry about the higher term may spoil the convergence of the asymptotic
series in ordinary manipulations [3], since one cannot refuse to add the higher corrections which will
eventually lead to divergence of the asymptotic series, while the situation in the perturbation group
scheme is substantially improved. In going to higher corrections, the corrections decrease 10−3 with the
order before the eighth order, but remains in the same order at the tenth order. This might be a signal
of divergency.

In quantum chronodynamics, the Gell-Mann-Low β-function in the perturbation scheme can be defined
by the following series [17],

β(g) = −β0g
3 − β1

1

2!
g5 − β2

1

3!
g7 + O(g9), (33)

where the coefficient can be obtained from renormalization,

β0 =
1

(4π)2

(

11 − 2

3
Nf

)

,

β1 =
1

(4π)4

(

102 − 38

3
Nf

)

,

β2 =
1

(4π)6

(2857

54
− 5033

18
Nf +

325

54
N2

f

)

(34)

where Nf is the number of flavors of quarks. Thus it is evident that the behavior of the ordinary
β-function is substantially modified by the factors 1/n! in the perturbation group scheme.

7 Rayleigh-Schrödinger Series for Ground State Energy

The ground state energy of the Hamiltonian, p2 + x2 + βx4(β > 0), is the asymptotic to E0(β) as β ↓ 0.

In perturbation group scheme, for β = 0.2, the sums are given in the following table

N an(0.2)n/n! N an(0.2)n/n!

0+1 +1.150000 9 +0.000005
2 -0.026250 10 -0.000001
3 +0.009375 11 +.0000000
4 -0.002016 12 -0.000000
5 +0.000597 13 +0.000000
6 -0.000178 14 -0.000000
7 +0.000052 15 +0.000000
8 -0.000016

∑

1.131568

E0 ≈ 1.131568, rather than the data E0(β) = 1.118292.... given by the variational method.
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Actually, the Hamiltonian of the one-dimensional anharmonic oscillator is

H =
1

2
ϕ̇2 +

1

2
m2ϕ2 + λϕ4. (35)

Then the ground state energy of the oscillator as observed by Vender and Wu is given by

E0(λ) =
1

2
m +

∞
∑

n=1

mAn(λ/m3)n. (36)

The detail asymptotic growth of An is

An ∼ (−1)n+1(6/π3)1/2Γ(n +
1

2
)3n. (37)

where

Γ
(

n +
1

2

)

=
(2n)!

√
π

4nn!
(38)

According to Stirling’s formula

Γ(x + 1) =
√

2πxxxe−x(1 + O(x
1

5 )) (39)

Thus in the perturbation group scheme,

An ∼ (−1)n+1
( 6

π3

)1/2 Γ
(

n +
1

2

)

3n

n!

= (−1)n+1
( 6

π3

)1/2 (2n)!
√

π3n

4n(n!)2

= (−1)n+1
( 6

π3

)1/2√
π

√

2π(2n + 1)

2π(n + 1)

(2n + 1)2n+1

(n + 1)2(n+1)

e−(2n+1)

e−2(n+1)

(3

4

)n

→ (−1)n+1
( 6

π3

)1/2 22n+1e

(n + 1)2/3

(3

4

)n

→ (−1)n+1
( 6

π3

)1/2 2e3n

(n + 1)3/2

(40)

It can be easily seen that if set m = 1, and λ <
1

3
, then E0 will go to a finite value in the

limit of n → ∞.

8 Conclusion

We propose the perturbation group and perturbation equation, and then obtain the formalism for the
perturbation transformation. Using the Rayleigh-Schrodinger series, we derive the generator for pertur-
bation transformations, give out the transformation for finite perturbations, and find that the coupling
constant in quantum field theory is varied and goes to zero as the order of approximation goes to infinity
in ordinary perturbation series as Dyson once expected.
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