光锥 QCD 等效场论与介子结构·

王顺金 陶军

四川大学物理系,成都市, 610064

(高能物理分会第十届全国粒子物理学术会议)

摘要:简要介绍用光锥 QCD 等效场论的哈密量对介子质谱和波函数 的非微扰计算的初步结果。首先把 Pauli-Bodsky 等人的相对论性的、 介子的光锥 QCD 等效哈密顿量和相应的介子的质量本征方程变至总 角动量表象,然后非微扰地求解了这一方程,得到了二十四个赝标介 子和矢量介子的基态质量和波函数,质谱在1.5% 左右符合实验。然后, 引进相对论性禁闭势,计算了二十八个赝标介子和五十五个矢量介子 包括激发态质量谱,J=0 和1 的绝大多数介子计算结果与实验数据符 合在 5%左右;J=2 的介子符合差一些;预言了 24 个介子的基态和激 发态质量。 I. 引言

1. 什么是光锥 QCD [Light Cone (Front) QCD]?

(1) 按照 Dirac 的三种相对论动力学形式理论,

- 光锥 QCD 是 QCD 的重要形式
- Dirac 的相对论动力学形式理论(Form of Dynamics): 什么是动力学?
- 动力学<mark>就是物理系统的</mark>时间演化→时间平移算子是哈密顿量 动力学归结为哈密顿量,其形式依赖于时间的定义。

按照相对论的三种时间定义,有三种等价的相对论动力学形式: (i) Instant Form(瞬时形式),通常形式,保持 t=constant 不变 (ii) Light Front Form(光锥形式),保持光锥面不变 (iii) Point Form(点形式),保持坐标原点不变

- (2)无限大动量表象下的 QCD (讨论渐进自由)是光锥 QCD 的前身
 (3)为了解 QCD 低能行为寻找新的理论途径-光锥 QCD 是一个尝试 光锥 QCD 动力学(哈密顿量)与核多理论接近
- 2. 光锥 QCD 的优点:
 - (1) Poincare 群十个生成元中,

(i) Instant Form: 六个运动学的, 四个动力学的

$$P^{i}, J^{i}(i=1,2,3); P^{0}=H, K^{i}=M^{0i}(i=1,2,3)$$

保持 t=c 不变

(ii) Light Front Form 有最大数目的运动学守恒量: 七个运动学的, 三个动力学的 $P^+, P^i(i=1,2), J^3, K^3, E^1 = K^1 + J^2, E^2 = K^2 - J^1; P^-, F^1 = K^1 - J^2, F^2 = K^2 + J^1$ $x^+ = t + x^3, x^- = t - x^3, x^1 = x^1, x^2 = x^2$, 保持 $x^+ = c$ 不变 (iii) Point Form: 六个运动学的, 四个动力学的 $J^i, K^i; P^{\mu}(\mu = 0, 1, 2, 3)$ 保持 $t^2 - \bar{x}^2 = ds^2 > 0$ 不变 (2) 除去零膜后, 光锥 QCD 真空简单、平庸 (3) 束缚质量算子平方的本征方程是相对论协变的

- (4)哈密顿量可分解为动能与势能
- (5) 可以用核多体理论方法求解束缚态本征方程

- 3. 为什么要研究光锥 QCD 等效哈密顿量和介子质谱?
 - (1) 光锥 QCD 有两个学派: Brodsky-Pauli 和 Wilson-Perry Brodsky-Pauli 提出的光锥 QCD 等效哈密顿量, 没有人严格求解
 - (2) 了解光锥 QCD 等效哈密顿量的物理内涵, 光锥 QCD 的潜力与问题

11. 基态问题

泡里等人,基于离散光锥 QCD^{III},用投射算子方法,求得了相对论 性的、由价夸克和反价夸克仿射的、介子的福克子空间上的等效的质 量平方算子(或光锥 QCD 的等效哈密顿量)和相应的质量本征方程^[2]

 $[M^{2} - (E_{1}(\vec{k}) + E(\vec{k}))^{2}]\varphi_{s_{1}s_{2}}(\vec{k}) = \sum_{s_{1}'s_{2}'} \int d\vec{k} U_{s_{1}s_{2};s_{1}'s_{2}'}(\vec{k},\vec{k}')\varphi_{s_{1}'s_{2}'}(\vec{k}')$

然而该本征方程是在自旋-动量表象写出的,使得人们难于在总 角动量表象中求解此介子质谱的本征方程。把上述方程用于正负电子 素问题^[3],计算结果说明了三点:(1)在质心系中,总角动量是好量 子数(有转动不变性),(2)动量表象不好,把很多不同角动量态混 合起来,增加不必要的计算量,(3)动量截断要破坏转动不变性和角 动量守恒。

因此,基于光锥 QCD 的介子的相对论性的等效哈密顿量至今未能 求解。 我们首先把泡里等人的相对论性的、介子的光锥 QCD 等效哈密顿 量和相应的介子的质量本征方程变至总角动量表象,然后非微扰地求 解了这一方程,得到了二十四个赝标介子和矢量介子的基态质量和波 函数。

在总角动量表象中,介子质量的本征方程为,

$$[M^{2} - (E_{1}(k) + E_{2}(k))^{2}]R_{Jsl}$$

= $\sum_{l=|J-s'|}^{J+s'} \sum_{s'=0,1} \int k'^{2} dk' U_{sls'l'}^{J}(k,k')R_{Js;l'}(k')$ (1)

其中积分核为

$$U_{sls'l'}(k,k') = < \Phi_{JslM}(\Omega_{\vec{k}},s) | \hat{U}(\vec{k},\vec{k}';\vec{\sigma}(1),\vec{\sigma}(2)) | \Phi_{JslM}(\Omega_{\vec{k}'},s') >$$
(2)

对二十四个介子的基态质量和波函数的计算都使用这组参数。

计算结果列于表 1。对味的非对角的轻夸克系统和重夸克系统, 上述等效哈密顿量能对基态质量作出很好的描述,介子的基态质量与 实验值的符合在1.5% 左右,计算的 π[±] 的半径(0.515 fm)与实验值 (0.67 fm)接近。但是,所有激发态的结果都不好^[3]。

介子	Ours (MeV)	Pauli's	Exp (MeV)	符合情况
		(MeV)		Error (%)
π^{\pm}	140	140	140	
ρ(770)	768	768	768	
K [±]	494	494	494	
K ^o	494	494	498	(-0. 8%)
K* [±]	900	871	892	(0. 89%)
K *⁰	900	871	896	(0. 44%)
D [±]	1865	1865	1869	(-0. 2%)
D ^o	1865	1865	1865	
D*°	1954	2030	2007	(-2. 6%)
D* [±]	1954	2030	2010	(-2. 7%)
D [±] _s	1964	1929	1969	(-0. 26%)
D* [±] _s	2075	2124	2112	(-1. 6%)
B ⁰	5279	5279	5279	
B [±]	5279	5279	5279	(0. 0%)
B*	5292	5418	5325	(-0. 6%)
B ⁰ _s	5390	5338	5370	(0. 21%)
B* [°] s	5410	5510	预言	
B [±] ₀	6300	6114	6400	(-1.5%)
B* [±] ₀	6350	6580	预言	
η _° (1S)	2940		2980	(-1.3%)
J/ψ(1S)	3063		3097	(-1.1%)
Y (1S)	9527		9460	(0. 71%)
χ _{ь0} (1P)	9785		9860	(-0. 76%)
χ_{b1} (1P)	9797		9893	(-0. 97%)

表 | 计算所得的 24 个介子的基态质量及其对实验值的偏离

预言能力: 用了5个数据,

有17数据符合,

预言了两个数据

上述结果表明: (1) 禁闭势对于激发态是不可缺少的, 但对于基态并不重要。(2) 味混合势对轻夸克系统是重要的, 但对重夸克系统的影响就小一些。(3) 单一($q\bar{q}$) 价夸克子空间对于介子的基态是好的近似, 但对于介子的激发态就不是好的近似, 必须扩大($q\bar{q}$) 价夸克子空间以考虑来自 QCD 真空的多个($q\bar{q}$) 对效应。

这些结果,对于改进光锥 QCD 等效哈密顿量理论可能有重要意义。

下面讲最重要的改进: 引进禁闭势

111. 禁闭势与激发态

基本思路:

- (1) 格点规范计算表明: 坐标空间禁闭势是线性的,
- (1)把组份夸克模型用的坐标空间的非相对论性的线性禁闭 势变到动量空间,得到非相对论性的动量空间的禁闭势,
- (2)把非相对论性的动量空间的禁闭势推广成为相对论性的 动量空间的禁闭势。
- 1. 动量空间相对论线性禁闭势:

$$V_{con}(Q) = \lim_{\eta \to 0} \frac{\lambda}{2\pi^2} \frac{\partial^2}{\partial \eta^2} \left[\frac{1}{Q^2 + \eta^2} \right] = \lim_{\eta \to 0} -\lambda \frac{\partial^2}{\partial \eta^2} \left[V_{Yukawa} \right]$$

在介子本征方程相互作用核中加入半唯象的禁闭势 $V_{con}(Q)$:

$$\begin{split} U_{\lambda_{q}\lambda_{\bar{q}};\lambda'_{q}\lambda'_{\bar{q}}} &= \frac{2m_{1}m_{2}}{\sqrt{x(1-x)x'(1-x')}} \times \{ \\ \overline{u}(k_{q},\lambda_{q})\overline{v}(k'_{\bar{q}},\lambda'_{\bar{q}})[\gamma^{\mu}(q)\cdot\gamma_{\mu}(\overline{q})(V_{OGE} + \varepsilon V_{con})]v(k_{\bar{q}},\lambda_{\bar{q}})u(k'_{q},\lambda'_{q}) \\ &+ \overline{u}(k_{q},\lambda_{q})\overline{v}(k'_{\bar{q}},\lambda'_{\bar{q}})[I(q)\cdot I(\overline{q})(1-\varepsilon)V_{con})]v(k_{\bar{q}},\lambda_{\bar{q}})u(k'_{q},\lambda'_{q}) \} \\ V_{OGE} &= -\frac{4}{3}\frac{1}{2\pi^{2}}\frac{\overline{\alpha}(Q)}{Q^{2}} \end{split}$$

这里 $I \ge 4 \times 4$ 维的单位矩阵,禁闭势的洛伦兹结构采取标量耦合和矢 量耦合混合的形式, $\varepsilon(0 \le \varepsilon < 1)$ 是调节标量禁闭势和矢量禁闭势混 合的参数,当它为零时禁闭势只有标量型洛伦兹结构。

2. 包含禁闭势的介子质量本征方程的求解

把加入线性禁闭势后光锥形式下的介子束缚态方程变换到瞬时形式,在质心系下的总角动量表象中求解:对赝标量介子,取 $\varepsilon = 0$, $\overline{\alpha}, \lambda$, u, d的质量 m_u, m_d 由 π 介子基态、第一和第二激发态质量的实验 值确定, s, c, b夸克的有效质量分别用 K^-, D^0 和 B^- 介子基态质量的 实验值确定:

> $m_u = m_d = m = 300 \text{MeV}$ $m_s = 410 \text{ MeV}$ $m_c = 1312 \text{MeV}$ $m_b = 4305 \text{MeV}$ $\lambda = 2.119 \times 10^4$ $\overline{\alpha} = 0.2654$

28 个赝标量介子质量谱的计算结果见表 II
39 个 J=1 的矢量介子质量谱的计算结果见表 III、 IV:
16 个 J=2 的矢量介子质量谱的计算结果见表 V、IV:

(1) 表 II 赝标量介子质量谱(包括激发态)

(a) JSL=000: 22 个赝标介子

Meson	$q\overline{q}$	Exp(Mev)	Our(Mev)
π	иd	140	140
$\pi(1300)$		1300±100	1511 (+16%)
$\pi(1800)$		1801±13	1801
K	us	494	494
<i>K</i> ′			1670 (预言)
<i>K</i> ″			1967 (预言)
D	сū	1865	1865
D			2694 (预言)
<i>D</i> ″			2717 (预言)
D_{s}	$c\overline{s}$	1969	1953 (0.1%)
D'_{s}			2806 (预言)
$D_{s}^{\prime\prime}$			2929 (预言)
B	$d\overline{b}$	5279	5279
<i>B</i> ′			5700 (预言)
<i>B</i> ″			5783 (预言)
B_{s}	$s\overline{b}$	5370	5385 (预言)
B'_{s}			5783 (预言)
B_{s}''			6033 (预言)
	$c\overline{b}$	6400±400	6014 (6%)
B_c'			6645 (预言)
B_c''			7253 (预言)
$\eta_c(1S)$	$c\overline{c}$	2980	2773 (7%)

Meson	$q\overline{q}$	exp(Mev)	Our(Mev)	误差
a ₀ (980)	$u\overline{d}$	984.7±1.2	913	7.3%
a ₀ (1450)	иd	1474±19	1606	9.0%
$K_0^*(1430)^{kk}$	$u\overline{s}$	1412±6	1079	23.5%
$\chi_{c0}(1P)$	$c\bar{c}$	3415	3211	6.0%
$\chi_{b0}(1P)$	$b\overline{b}$	9860	9478	3.9%
$\chi_{b0}(2P)$	$b\overline{b}$	10232.1±6	10436	2.0%

(b) JSL=011: 6 个赝标介子

(2)J=1:参数: u=d=300, s=410, c=1600 , b=4910, α =0.4594, λ =1.319×10⁴

表 | | | J=1 的矢量介子质量谱: JSL=101 & 111: 16 个介子

Meson	J^{PC}	exp(Mev)	Our(Mev)
b ₁ (1235)	1+-	1229	1229
a ₁ (1260)	1++	1230±40	1249(2%)
b ₁ ''	1+-	_	1465(预言)
<i>K</i> ₁ (1270)	1+	1273	1306(3%)
<i>K</i> ₁ (1400)	1+	1402	1405
<i>K</i> ₁ ''	1+	-	1586(预言)
$D_1(2420^{\pm})$		2423	2375(2%)
$D_1(2420^{\circ})$	1+	2422	2375(2%)
D_1 '	1+	-	2721(预言)
$D_{S1}(2536)^{\pm}$	1+	2535	2461(3%)
D_{S1} '	1+	-	2898(预言)
$\chi_{c1}(1P)$	1++	3510	3548(1%)
χ_{c1}	1++		3713(预言)
$\chi_{b1}(1P)$	1++	9892	9892

$\chi_{b1}(2P)$	1++	10255	9919(3%)
χ_{b1}	1++		10968(预言)

表 IV J=1 的矢量介子质量谱: JSL=110 & 112: 23 个介子

Meson	J^{PC}	exp(Mev)	Our(Mev)
$\rho(770)$	1	771	905 (17%)
<i>ρ</i> (1450)	1	1465±25	1311 (11%)
<i>ρ</i> (1700)	1	1700±20	1705
$K^{*}(892)^{\pm}$	1-	892	958 (7%)
$K^{*}(892)^{0}$	1-	896	958 (7%)
<i>K</i> [*] (1410)	1-	1414±15	1383 (2%)
<i>K</i> [*] (1680)	1-	1717±27	1745
$D^{*}(2007)^{0}$	1-	2006	2059 (3%)
$D^*(2010^{\pm})$	1-	2010	2059 (2%)
D^* '	1-	_	2466(预言)
$D_s^{*^{\pm}}$	-	2112	2124 (1%)
D_s^* '	_	_	2580(预言)
B^*	1-	5325	5382 (1%)
<i>B</i> *'	1-	_	5637(预言)
$J/\psi(1S)$	1	3097	2900 (6%)
$\psi(2S)$	1	3686	3731 (1%)
ψ(3770)	1	3770	3815 (1%)
$\gamma(1S)$	1	9460	8482 (10%)
$\gamma(2S)$	1	10023	10101 (1%)
$\gamma(3S)$	1	10355	10260 (1%)
$\gamma(4S)$	1	10580	10959 (5%)

$\gamma(10860)$	1	10865	10961 (1%)
$\gamma(11020)$	1	11019	11063 (0.4%)

(3) J=2: 参数: u=d=361, s=500, b=4765, $\alpha = 0.3, \lambda = 0.7 \times 10^{4}$

表 V J=2 的矢量介子质量谱: JSL=202/212 : 7 个介子

Meson	J^{PC}	JSL	exp(Mev)	Our(Mev)
$\pi_2(1670)$	2^{-+}	202	1672	1655 (1%)
$\pi_2(2100)$	2-+	202	2090	1656(21%)
<i>K</i> ₂ (1580)	2^{-}	202/212	1580	1690 (7%)
<i>K</i> ₂ (1770)	2^{-}	202/212	1773	1724 (3%)
<i>K</i> ₂ (1820)	2^{-}	202/212	1816	2042(11%)
<i>K</i> ₂ (2250)	2^{-}	202/212	2247	2043 (9%)
$\gamma(1D)$	2	212	10161	10159

表 VI J=2 矢量介子质量谱: JSL=211/213: 9 个介子

Meson	J^{PC}	JSL	exp(Mev)	Our(Mev)
<i>a</i> ₂ (1320)	2++	211/213	1318	1318
<i>a</i> ₂ (1700)	2++	211/213	1732+16	1469 (15%)
$K_2^*(1980)$	2+	211/213	1973	1670 (15%)
$D_2^*(2460)^0$	2+	211/213	2461	2460
$D_2^*(2460)^{\pm}$	2+	211/213	2459	2460
$\chi_{c2}(1P)$	2++	211/213	3556	3629 (2%)
$\chi_{c2}(2P)$	2++	211/213	3929	3855 (2%)
$\chi_{b2}(1P)$	2++	211/213	9912	9913
$\chi_{b2}(2P)$	2++	211/213	10269	10326 (0.6%)

角动量相关势(类似核物理)(理论计算值偏小)?

唯象引进禁闭势后,可给出激发态的合理结果

IV. 讨论

- 1. Paul i-Brodsky 光锥 QCD 等效哈密顿量的问题:
 - (1) 没有处理零膜,从中提取手征对称破缺 (m_q) 和禁闭势的信息 没有禁闭势,只能唯象引进手征对称破缺 (m_q) ,
 - (2) 没有味混合,
 - (3) 忽略多夸克对的贡献

手征对称性破缺(m_a)和夸克禁闭问题是 QCD 最大的问题

2. 本文: 唯象引进禁闭势

- IV. 下一步工作
 - 1. 角动量相关势
 - 2. 考虑味混合:研究味对角介子: π°
 - 3. 用波函数研究衰变问题和形状因子
 - 4. 把介子激发态谱做得更系统: Isgur
 - 5. 扩大子空间: $(q\bar{q})+(q\bar{q}q\bar{q})$,研究多夸克对的贡献
 - 6. 零膜问题研究: 手征对称性破缺,禁闭势

参考文献

- [1] S. J. Brodsky, H. C. Pauli, and S. S. Pinsky, Phys. Rep. 301 (1998) 299-486.
- [2] H. C. Pauli, Nucl. Phys. B90 (Proc. Suppl.) (2000) 154-160.
- [3] U. Trittmann and H. C. Pauli, Nucl. Phys. B90 (Proc. Suppl.) (2000) 161-169.
- Wang shun-Jin, Li Lei, Zhou Shan-Gui, Zhang Guang-Biao, On the physical contents of the light-cone QCD effective Hamiltonian on meson sector, S.J.Wang, L.Li, S.G.Zhou, G.B.Zhang, Chin.Phys.Lett.Vol.23, (2006)1426.
- [5]. Li Lei, Wang Shun Jin, Zhou Shan Gui, and Zhang Guang Biao, A Light-Cone QCD Inspired Meson Model with a Relativistic Confining Potential in Momentum Space, Chin. Phys. Lett. 24(2), (2007)374.