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I. Why TeV Scale Is Specially Important?

• SM is SU(3)c × SU(2) ×U(1) gauge theory.

Mg, Mγ = 0,

MW = 80.403 ± 0.029 GeV, MZ = 91.1876 ± 0.0021 GeV.

• Renormalizability of the EW gauge theory requires the Lagrangian

to be exactly SU(2) ×U(1) symmetric, while all mass terms

−M2
WW

i
µW

iµ, −mf(ψ̄LψR + ψ̄RψL)

break the SU(2) ×U(1) symmetry, so that they cannot occur in the

Lagrangian.

In the Lagrangian (equations of motion), all particles are massless.

Where do the observed nonvanishing particle masses come from?
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• In quantum field theory,

Fobs = 〈phys. state|Fop|phys. state〉

↑ ↑ ↑

asymm. symm. asymm.

|phys. state〉 = a† · · · · · · b† · · · · · ·|0〉

↑ ↑ ↑

asymm. symm. asymm.

Observed particle masses can be nozero if the physical

ground state is asymmetric.

symmetric Lagrangian =⇒ asymmetric vacuum

spontaneous symmetry breaking (SSB).
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• SM introduces elementary Higgs field φ and Higgs potential

V (φ) = −µ2|φ|2 + λ|φ|4|, λ > 0

to obtain 〈φ〉2 = v2 ≡
µ2

λ
6= 0.

v = 246 GeV

can give the measured values of MW and MZ.

Higgs boson H (φ = v+H) is the signal. So far H is not found.

LEP direct search bound:

mH > 114.4 GeV.

With mt = 170.9 GeV, LEP precision data

⇓
mH >/ 182 GeV, 95% CL.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• In SM, Yukawa coupling yfψ̄φψ=⇒mf = yf
v

√
2

is put in by hand.

Fermion masses are free parameters in SM.

• The origin of particle masses:

Newton:

m0

d2~x

d t2
= ~f

Einstein:

E =mc2 =
m0c

2√
1 − v2

c2

≈ m0c
2 +

1

2
m0v

2 + · · ·

Static energy: E0 = m0c
2

m0 =?
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• SM Higgs sector is not a self-consistent theory.

? Triviality:

Suppose SM is valid when E ≤ Emax. Summing up all leading

logrithm corrections: λ
Emax→∞−→ 0. inconsistent !

There must be a scale of new physics Λ so that Emax >/ Λ.

? Unnaturalness: m2
H =m2

H0 + δm2
H

SM: =⇒ δm2
H = AΛ2, m2

H0 = BΛ2 [A, B = O(1)]

m2
H = (A+B)Λ2

Possible new physics scale is Λ ∼MP ∼ 1.22× 1019 GeV.

Then A +B =
m2
H

M2
P

∼ 10−34,

requiring A, B to be of the precision of 34 digits. Unnatural !.

Naturalness requires Λ ∼ TeV.
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• If there are only presently discovered particles, the cross section of

WW → WW will increase with the c.m. energy E. When

E ≥ 1.2 TeV, the cross section will be so large that it violates the

conservation of probability (unitarity of S-matrix). So there must be yet

undiscovered particle(s) below 1.2 TeV− (unitarity bound) !

• We see that, in EW theory, all masses come from the VEV v 6= 0

breaking SU(2) ×U(1). EWSBM is not clear yet. Probing EWSBM

concerns the understanding of the original of all particle masses.

• We also see that TeV scale is the scale of discovering new particle(s)

or going beyond the SM.

• Building high energy colliders covering the TeV scale will be able to

explore the mechanism of mass generation and/or find out new physics

beyond the SM.
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II. TeV Colliders
• LHC:

14 TeV pp collider, designed luminosity:
∫∫∫
yr Ldt = 1034 cm−2s−1.

? Advantage: parton colliding energy up to a couple of TeV

? Sortcoming: large hadronic bkgd

LHC: discovery machine
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• ILC:

e+e− collider (in R&D)

Phase I: 200 GeV ≤ E ≤ 500 GeV (adjustable)

Phase II: E ∼ 1 TeV

Photon collider can be made by

means of laser back-scattering.

Good for studying Higgs boson.

? Advantage: small hadronic bkgd

? Sortcoming: expensive for

increasing energy

ILC: discovery and precision
measurement machine

• More higher energy colliders are under consideration.
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III. Examples of New Physics Models
• SUSY (MSSM)

? SUSY partners: W̃±..., g̃, q̃, l̃±.... Can solve the triviality and
fine-tuning problems.

? Can accommodate SUSY GUT MGUT ∼ 5 × 1016 GeV, and

radiative EWSB.

? Two Higgs doublets =⇒ h0, H0,A0, H±.

Two loop =⇒mh >/ 135 GeV.

? LHC coverage:
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? sparticles not found=⇒ SUSY is broken, SUSY breaking

mechanism not clear (general description: 105 free parameters).

?∆m2
H ∼ (M 2

SUSY −M 2
SM)

λ2
f

16π2
ln

(
Λ

MSUSY

)
.

To avoid fine-tuning, MSUSY >/ TeV (low energy SUSY).

? LHC, ILC: can find sparticles.

? ILC: can make precision

measurement of sparticle masses:

δmt̃,b̃ = 1 GeV,
δmχ±,0 = 0.1 −1 GeV,
δml̃,ν̃ = 0.05 −0.3 GeV,
δmτ̃ ,ν̃τ = 0.6 GeV.

can test SUSY breaking mechanism.
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• Technicolor (TC)

? Abandon φ to avoid triviality and fine-tuning. Introduce new strong

interactions TC and new fermions to develop

〈ψ̄ψ〉 6= 0 =⇒ v 6= 0.

? Yukawa interaction is dynamically induced

? Original QCD-like TC model is ruled out

by LEP precision data S paramter too large).

? Improved models associated with Topcolor (TC2) [Hill (1995);Lane,

Eichten (1995), etc]. Consistent with LEP data [Chivukula, Terning

(1996); Yue, Kuang, Wang, Li (2000)]

? Signals: ρTC, πTC, πt, · · ·.
? Attempt to account for CKM matrix and CP violation [Martin, Lane

(2005)].
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• Top Quark Seesaw

[Dobrescu,Hill (1998); Chivukula,Dobrescu, Georgi, Hill (1999)]

? Introduce topcolor group: Gtc = SU(3)1 × SU(3)2 and new

strong interaction group G breaking Gtc → SU(3)QCD.

? introduce SU2)W -singlet quark χ with proper U(1)Y quantum

number. Topcolor causes the bound state scalar

ϕ =

(
χR tL

χR bL

)
ϕ behaves like a Higgs doublet. 〈ϕ〉 = v breaks EW symmetry.

? Dynamics leads to

mt ≈ mtχ

µχt

µχχ
∼ 174 GeV

? mH ∼ 1 TeV [He, Hill, Tait (2002)].
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• Little Higgs

[Arkani-Hamed, Cohen, Georgi, Gregoire, Katz, Kaplan, Nelson,

Schmaltz, Wacker, Walker (2001−2005)]
? Strong interaction at Λ ≈ 10 ∼ 30 TeV forming

pseodo Goldstone bosons (PGBs).

? Heavy states at gf ≈ 1 ∼ 3 TeV
? Same spin particles cancel quardratic divergences to keep one or

two PGBs light, ( 100−300 GeV), as light Higgs boson(s) φ, 〈φ〉 = v

breaks SU(2) ×U(1)

? Phenomenology of SU(5)/SO(5) model [Han, Logan,McElrath,

Wang (2003); Burdman, Perelstein, Pierce (2002)]
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• Higgsless Model Based on Extra Dimension

? Higgsless model in 5-dim with broken SU(2) ×U(1) built by

imposing boundary conditions in the 5th-dim [Csaki et al. (2004)]

? By means of dimension deconstruction Higgsless model can be

constructed in 4-dim gauge theories with SU(2) ×U(1) broken

spontaiously by strong dynamics, and boundary condition in the 5th-

dim can be induced by diagonalizing the mass matrix. Minimal model

contains extra W1 and Z1 with 400 GeV ≤ MW1 ≤ 1 TeV.

Can make S,T,U ≈ 0 [He (2004); Chivukula et al. (2005)].

? LHC signals: [Tsinghua-MSU (2007)]

pp → W ∗
1Z0 → W0W0Z0, pp → W ∗

1 jj → W0Z0jj
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IV. Perspectives of LHC and ILC Expts
• General No-Lose Probe of New Physics Effects

No hint that nature can be described by one of the known models.

General no-lose probe is needed.

Effective couplings of known particles reflect the effect of new physics.

How to measure effective couplings at LHC and ILC?
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• What If Only a Light Higgs Resonance Is Found?

Is it a SM Higgs or a Higgs in new physics?

Need to test Higgs couplings.

? Testing gauge couplings of the Higgs boson

LHV V
eff = gHγγHAµνA

µν + g
(1)
HZγAµνZ

µ∂νH+g
(2)
HZγHAµνZ

µν

+g
(1)
HZZZµνZ

µ∂νH+g
(2)
HZZHZµνZ

µν

+g
(1)
HWW (W+

µνW
µ
−∂

νH + h.c.)+g
(2)
HWWHW

+
µνW

µν
−

SM: g
(i)
HV V= 0.

? LHC

◦ [Plehn, Rainwater, Zeppenfeld (2003)] WW fusion at the LHC:

pp → qq′H, H → γγ, τ+τ−:

1σ (stat.): |g(2)
HWW | ≥ 0.1 TeV−1.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

◦ [Zhang, Kuang, He, Yuan (2003)]

W+W+ → W+W+ → l+νll
+νl

3σ (stat.) : |g(1)
HWW | ≥ 0.075 TeV−1, |g(2)

HWW | ≥ 0.15 TeV−1,

|g(1)
HZZ| ≥ 0.075 TeV−1, |g(2)

HZZ| ≥ 0.058 TeV−1,

|g(1)
HZγ| ≥ 0.041 TeV−1, |g(2)

HZγ| ≥ 0.032 TeV−1,

|gHγγ| ≥ 0.035 TeV−1.
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? ILC:

◦ [Hagiwara, Ishihara, Kamoshita, Kniel (2000)] ILC:

e+e− → HZ, H → bb̄, Z → ff̄ :

2σ (stat.): |g(i)
HZZ|, |g(i)

HZγ| ≥ 10−3 − 10−2 TeV−1.

◦ [Han, Kuang, Zhang (2005)] γγ colliders:

γγ → ZZ → 4 jets

3σ (stat.) :

500 GeV ILC |gHγγ| ≥ 0.023 TeV−1,

1 TeV ILC |gHγγ| ≥ 0.010 TeV−1,

3 TeV CLIC |gHγγ| ≥ 0.0018 TeV−1.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• What If Not Even a Light Resonance Is Found?

Definitely new physics. Unitarity=⇒ new particle(s) [probably wide

resonance(s)] below 1.2 TeV.

EW chiral Lagrangian [Appelquist, Wu (1995)]

Leff(W,Z,ϕ) =

14∑∑∑
i=0

L(i) =

14∑∑∑
i=0

αiO(W,Z,ϕ)

(ϕ± ∼ W±
L , ϕ

0 ∼ Z0
L).

SM: αi = 0.

? Measuring αi can obtain information about nature.

? A theoretical analysis of the sensitivity of measuring αi [He, Kuang,

Yuan (1996)]:
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? Monte Carlo simulations: 1σ sensitivities at LHC and ILC:

[TESLA TDR] 2-parameter fit:

LHC (

∫∫∫
Ldt = 100 fb−1) :

α4 < −0.0011 or α4 > 0.011, α5 < −0.0022 or α5 > 0.0076

800 GeV TESLA (

∫∫∫
Ldt = 1000 fb−1) :

α4 < −0.0070 or α4 > 0.0051, α5 < −0.0025 or α5 > 0.0019

[2005 International LC Workshop, Stanford] 5-parameter fit:

ILC (

∫∫∫
Ldt = 1000 fb−1) :

α4 < −0.017 or α4 > 0.015, α5 < −0.016 or α5 > 0.015,

α6 < −0.025 or α6 > 0.035, α7 < −0.020 or α7 > 0.021,

α10 < −0.035 or α10 > 0.029.
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• The measured effective couplings (sensitivity is crucial) reflect

certain properties of the nature. Checking what model can lead to

the measured effective couplings=⇒clue of finding out the right new

physics model.

V. SUMMARY

• EWSBM is not clear. New physics∼ TeV.

• LHC and LC may explore EWSBM and discover new physics.

• Signals of known new physics models have been intensively studied.

More studies needed.

• If LHC and LC only find a light Higgs, testing effective Higgs couplings

may help to explore new physics.

• If LHC and LC find not even a light Higgs, studying EW chiral

Lagrangian may help to explore new physics.

• After finding new physics, particle physics will be in exciting new era.

Thanks !


