BESII物理成果

苑 长 征 (代表BES合作组) 中国科学院高能物理研究所

第十届全国粒子物理学术会议 2008年4月26-29日,南京

北京正负电子对撞机(BEPC)和 北京谱仪(BES)

1998年来设计工作 在粲偶素物理能区 的世界上唯一的 e⁺e⁻对撞实验。 L_{peak}=10³¹/cm²/s

BESII data samples

Data	BESII	CLEOc
J/ψ	58 M	
ψ'	14 M	25 M (2006)
ψ"	33 pb ⁻¹	~800 pb ⁻¹ (2006-07)
Continuum	6.4 pb ⁻¹ (√s=3.65 GeV)	21 pb ⁻¹ (√s=3.67 GeV)

A trunical arout

	Performance	BESII	in BES detector
σр/р	$1.7\%/\sqrt{1+p^2}$		$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ $J/\psi \rightarrow e^+ e^-$
σE/E	22% /√E		
PartID	dE/dx+TOF		
Coverage	80%		

BESII在PRL, PRD, PLB等刊物发表100余篇论文!

部分成果 (按发表顺序)

- 大范围R值扫描
- 发现X(1859)/X(1835)
- 研究标量介子
- "ρπ疑难"和"12%规则"
- 寻找五夸克态
- 发现ψ'' non-DDbar 衰变
- 暗物质寻找

更多成果见历届会议报告!

R值是粒子物理中直接证明夸克味与 色量子数的最基本的物理量,以及正 负电子湮没产生强子的概率。

理解真空性质,完整理解粲偶素能谱 标准模型精确检验实验和理论研究都与R值测量精度密切相关:
电磁跑动耦合常数α_{QED}(s):电磁相互作用强度参数;
Higgs粒子:标准模型对Higgs质量的拟合;
μ子反常磁矩(g-2):检验标准模型最灵敏、最精确的实验;

R值/ψ激发态

2.0-5.0 GeV 能区数据贫乏, 粲介子阈值以上粲偶素能 谱研究很差! 1998-99, 两轮R值扫描, 91个能量点。

BES的R值成果对标准模型计算的不确定性大大减小:

BES增强了在该能区使用pQCD的信心,理论预言精度进一步提高。

把BES的R值结果带入标准模型进行拟合,发现Higgs粒子质量的最可几值 由原来的62GeV上升为98GeV,质量上限由原来的170GeV改变为212GeV, 与欧洲核子中心几个实验组曾报告可能的Higgs粒子质量为115GeV的结果 相容。BES的R测量结果对实验上寻找Higgs粒子产生了极重要的影响。

X(1859) in J/ $\psi \rightarrow \gamma ppbar$

PRL91, 022001 (2003)

X(1859) in J/ $\psi \rightarrow \gamma ppbar$

Observation of X(1835)

Combine two η' decay modes

PRL95, 262001 (2005)

Fit with BW + polynomial backgrounds, considering mass resolution.

Statistical significance: 7.7σ

Mass res. ~ 13 MeV Efficiency ~ 4%

 $N_{obs} = 264 \pm 54$

 $M = 1833.7 \pm 6.1 \pm 2.7 \text{ MeV/c}^2$

 $\Gamma = 67.7 \pm 20.3 \pm 7.7 \text{ MeV/c}^2$

 $B(J/\psi \to \gamma X)B(X \to \pi^+\pi^-\eta') = (2.2 \pm 0.4 \pm 0.4) \times 10^{-4}$

X(1835)=X(1859)?

Mass agree
 Width not contradict
 No J^P in both cases

What is X(1835)?

Further arguments support X(1835)=X(1859)=ppbar bound state:

- ppbar bound state couples to η'ππ large
 [G.J.Ding and M.L. Yan, PRC72, 015208 (2005)]
- ppbar bound state couples to ppbar strong [S.L. Zhu and C.S. Gao, hep-ph/0507050]

$$B(J/\psi \to \gamma X)B(X \to \pi^{+}\pi^{-}\eta') = (2.2 \pm 0.4 \pm 0.4) \times 10^{-4}$$

$$B(J/\psi \to \gamma X)B(X \to pp) = (7.0 \pm 0.4^{+1.9}_{-0.8}) \times 10^{-5}$$

More data, more experiments, more information needed

- mass and width, most importantly J^P
- more decay modes
- more theoretical calculations

Light scalars

- > Many scalars found in experiments
- Do the sigma and kappa really exist?
- Have we seen scalar glueball already?

There are many experimental results from BES --- (theorists (will) give interpretations)

- States in J/ψ decays
 - phi pi pi/phi K K
 - omega pi pi/omega K K
 - gamma pi pi/gamma K K
 - K K pi pi (the kappa)
- Sigma in $\psi' \rightarrow \pi^+ \pi^- J/\psi$
- χ_c decays
 - Pair production of scalars

 $f_0(600)$ or σ $f_0(980)$ $f_0(1370)$ $f_0(1500)$ $f_0(1710)$ $f_0(1790)$

PLB 607 (2005) 243 PLB 603 (2004) 138 PLB 598 (2004) 149 PRD 68 (2003) 052003 PLB 642 (2006) 441

 $f_0(600) \text{ or } \sigma$: $f_0(980)$: $f_0(1370)$: $f_0(1500)$: $f_0(1710)$: $f_0(1790)$:

The scalars

PLB 607 (2005) 243 $f_0(980)$ parameters: $M = 965 \pm 8 \pm 6 \text{ MeV}$ $g_{\pi\pi} = 165 \pm 10 \pm 15 \text{ MeV}$ $\frac{g_{KK}}{g_{\pi\pi}} = 4.21 \pm 0.25 \pm 0.21$ $g_{\pi\pi}$

$f_{0}(1370) \text{ peak seen!}$ $M = 1350 \pm 50 \text{ MeV}$ $\Gamma = 265 \pm 40 \text{ MeV}$ Observation of f_{0}(1790)? $M = 1790^{+40}_{-30} \text{ MeV}$ $\Gamma = 270^{+60}_{-30} \text{ MeV}$

Couplings to γ , ω , and ϕ in J/ψ decays, and decays to $\pi^+\pi^-$ and K^+K^- reveal its nature!

Scalar	Β(φ S , S →ππ)(10 ⁻⁴)	B(∳S, S→KK)(10 ⁻⁴)
f₀(600)/ σ	1.6±0.6	0.2±0.1
f ₀ (980)	5.4±0.9	4.5±0.8
f ₀ (1370)	4.3±1.1	0.3±0.3
f _o (1500)	1.7±0.8	0.8±0.5
f ₀ (1710)		2.0±0.7
f ₀ (1790)	6.2±1.4	1.6±0.8

$$B(J/\psi \to \gamma f_0(1710) \to \gamma K\overline{K}) = (9.6^{+3.5}_{-1.9}) \times 10^{-4}$$

 $B(J/\psi \to \omega f_0(1710) \to \omega K^+ K^-) = (6.6 \pm 1.3) \times 10^{-4}$

 $\frac{BR(f_0(1710) \to \pi\pi)}{BR(f_0(1710) \to K\overline{K})} < 0.13 \quad @95\% CL$

Use of these information can be found in PRD71, 094022 (2005) PLB631, 22 (2005) arXiv: 0710.4452 ...

The mixing of the scalars

Idea available long time ago, a recent analysis in PRD71, 094022 (2005) By Frank Close and Qiang Zhao

$$\begin{aligned} |f_0(1710)\rangle &= 0.39|G\rangle + 0.91|s\bar{s}\rangle + 0.13|n\bar{n}\rangle \\ |f_0(1500)\rangle &= -0.73|G\rangle + 0.37|s\bar{s}\rangle - 0.57|n\bar{n}\rangle \\ |f_0(1370)\rangle &= 0.56|G\rangle - 0.12|s\bar{s}\rangle - 0.82|n\bar{n}\rangle , \end{aligned}$$

The mass of the scalar glueball is about 1.46-1.52 GeV in the same scheme.

H.D.Politzer 和 "12% 规则" PRL30, 1346 (1973)→通过检验→2004年诺贝尔奖 $\beta(g) = -(\frac{22}{3}c_1 - \frac{8}{3}c_2)g(g/4\pi)^2 + O(g^5)$

+M. Appelquist, PRL34, 43 (1975)→?

著名的"12%规则"!

$$Q_{h} = \frac{B_{\psi(2S) \rightarrow h}}{B_{J/\psi \rightarrow h}} = \frac{B_{\psi(2S) \rightarrow e^{+}e^{-}}}{B_{J/\psi \rightarrow e^{+}e^{-}}} \approx 12\%$$

ψ(2S)与J/ψ唯一的差别是主量子数不同,"12%规则" 是一个干净、简单的理论推论,预期普遍成立。

"规则"的破坏意味着强相互作用中非常基本的、不为人知的规律的存在!

强烈压低与反常增强

1. 多数过程满足"12%规则"

- 首次观测到ψ(2S)→ρπ, 发现强烈压低;比"12%规 则"压低近两个量级
- 3. 首次观测到ψ(2S)→K_SK_L, 相对于理论预期反常增强!

◆矢量 - 张量 反常压低

◆多介子末态

● 含重子对末态

反常压低或正常 反常压低或正常

●等等40多个衰变末态

13种对破坏"12%规则"过程进行解释的理论模型 其中9种被我们的实验所排除,与实验结果不符! 没有理论模型对反常增强做出预言!

Recent review, see hep-ph/0611214

2003年,日本LEPS实验组观测到Θ(1540),认为是五夸 克态,理论和实验一时轰动—新物质形态的发现!

> 同年,6家实验观测到同样的信号! 两年间,理论文章15篇/月递增!

BES数据中未观测到五夸克态

Select ψ ' and $J/\psi \rightarrow K_S pKn+c.c.$, search for single Θ production or pair production. Very few events observed, in agreement with the background fluctuation.

PRD70, 012004 (2004)

Schumacher PANIC'05

Photoproduction on Nuclei 😝 ⁺		LEP:	s-c			CLA	S-di					LER	PS-d		LE	PS-c	12	Dq	LAS	d2
Photoproduction on Proton pK _s ⁰							SAP	HIR) au	∖ S g1	.1	
Photoproduction on Proton $nK^*K^*\pi^*$									CLA:	S-p										
Exclusive K + (N) $\rightarrow pK_s^0$					DI,	ANA													BELL	E
HEP Electromagnetic: $\Theta^+ \to p K_s^0$							Herr	nes (zeus	FQ	CUS			BaB	ar1	W		
Neutrinos									P	вс€		SPH	IINX					E	aBar	2
$\mathbf{p} + \mathbf{A} \rightarrow \mathbf{p} \mathbf{K}_{s}^{0} + \mathbf{X} ; \mathbf{p} + \mathbf{p} \rightarrow \mathbf{p} \mathbf{K}_{s}^{0} \Sigma^{+}$						CO	SY-T(S'	DF VD2		P	INR (Нур	erCP		07	\$VD2		
Other 🖯 Upper Limits		1.	F	-1			BES],Ψ		HER.	^{A-B} (M) Ale	Ē			١	WA8	•	
红	•	禾	看	到				7				F								
经	•	丢	죄																	
	• •	/日	エリ)F								
p + p (or A) $ ightarrow \Xi$ $^ ^+$ X ; etc.				۲	I A49	/CEF	NĘ		W	A89	◍◖		HER ALE	А-В РН	BaE	ar1			E69	D
HEP Electromagnetic prod. \Xi 👘												⊢ H∉ Fa	erme CUS	₽		Dc	DMP.	ASS		
Inclusive $\Theta^+ \to p K^+$							Herr	nes (\mathbf{r}		ZEU	s		ZI	EUS		STA	R/R	HIC	
Inclusive $\Theta^0 {}_c \to D^{(*)-} p$							F	1/H	RA					۲		ZEU	S			
											A	LEPH	⊢ F	ocu	S					
months	9 10	11 12	1 2	3 4	5 6	7 8	9 10	11 12	1 2	3 4	5 6	7 8	9 10	11 12	1 2	3 4	5 6	7 8	9 10	11 12

BES首家报道了五夸克态Θ(1540)不存在的实验事实! 继BES之后,五夸克态不存在的实验结果越来越多, 目前看来Θ(1540)极有可能是统计涨落造成的!

ψ " decays

• $\psi''(3770)$ is above the open charm threshold, expected decay predominantly into charmed mesons.

However, old experimental results indicate big charmless
 decays [11.6nb for σ(e+e-→ψ"), 7.1nb for σ(e+e-→ψ"→charm)]

- Search for exclusive decay modes
 - Transitions to lower mass charmonia
 - Decays to light hadrons
- Inclusive measurements
- Low mass charmonium? Light hadrons?
- total hadronic cross section
- Total D cross section

Observation of $\psi'' \rightarrow \pi^+\pi^- J/\psi$

- $N^{obs} = 17.8 \pm 4.8$
- $N^{bkg} = 6.0 \pm 1.4$
- N^{signal}=11.8±5.0
- BR= $(0.34 \pm 0.14 \pm 0.09)\%$
- Γ=(80±33±23) keV
- First non-DDbar decay of ψ ''
- Agree with multipole expansion
 Kuang: PRD65, 094024 (2002)
- Confirmed by CLEOc later
 - BR=(0.189±0.020±0.020)% [PRL96, 082004 (2006)]

Search for inclusive ψ'' charmless decays

Search for invisible particles

WIMPs are good dark matter candidates, they may show themselves in particle decays into invisible final states!

$J/\psi \rightarrow \phi \eta, \phi \eta'$

- o Two good charged Kaons
 - o No hits outside of 30⁰ cone

o
$$\cos(\theta_{\text{missing}}) < 0.7$$

o $1.005 < M(K^+K^-) < 1.035 \text{ GeV};$

PRL97, 202002 (2006)

Search for $\eta/\eta' \rightarrow invisible$ decays in $J/\psi \rightarrow \phi \eta/\eta'$

An unbinned extended Maximum Likelihood Fit:

$$\mathcal{L}(N_{sig}^{\eta}, N_{sig}^{\eta'}, N_{bkgd}) = \frac{e^{-(N_{sig}^{\eta} + N_{sig}^{\eta'} + N_{bkgd})}}{N!} \times \prod_{i=1}^{N} [N_{sig}^{\eta} \mathcal{F}_{sig}^{\eta}(P_{miss}^{i}) + N_{sig} \mathcal{F}_{sig}^{\eta'}(P_{miss}^{i}) + N_{bkgd} \mathcal{F}_{bkgd}(P_{miss}^{i})],$$

J/ψ -invisible

• $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$ as a J/ψ sample by tagging $\pi^+ \pi^-$ arXiv: 0710.0039 [hep-ex] PRL (in press)

Select two low momentum pions, and require no other particles in detector.

More stringent constraint on NEW physics parameters:
(U-boson c-quark/LDM coupling)P. Fayet, Phys. Rev. D74, 054034 (2006).
P. Fayet, Phys. Rev. DP. Fayet, Phys. Rev. D75, 115017 (2007).

总 结

- BESII运行10年来在R值测量、强子谱、粲 偶素、粲物理以及新物理寻找等方面取得 了重要物理结果
- •仍然有一些分析在进行中,结果即将报道
- 2008年夏即将运行的BESIII将有更好的前景(参见李海波报告)

